Module abstochkin.graphing

Graphing for AbStochKin simulations.

Expand source code
"""  Graphing for AbStochKin simulations. """

#  Copyright (c) 2023, Alex Plakantonakis.
#
#  This program is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see <http://www.gnu.org/licenses/>.

from pathlib import Path

import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np


class Graph:
    """
    Graphing class for displaying the results of AbStochKin simulations.

    Notes
    -----
    To successfully use the LaTeX engine for rendering text on Linux,
    run the following command in a terminal: `sudo apt install cm-super`.
    """

    # First, set some global matplotlib settings
    plt.rcParams['figure.autolayout'] = True  # tight layout
    plt.rcParams["figure.facecolor"] = 'lightgray'
    plt.rcParams['text.usetex'] = True
    plt.rcParams['axes.titlesize'] = 9
    plt.rcParams['axes.labelsize'] = 7
    plt.rcParams['xtick.labelsize'] = 6
    plt.rcParams['ytick.labelsize'] = 6
    plt.rcParams["legend.fontsize"] = 7
    plt.rcParams["legend.framealpha"] = 0.65

    def __init__(self, /, nrows=1, ncols=1, figsize=(5, 5), dpi=300, **kwargs):
        self.fig, self.ax = plt.subplots(nrows=nrows, ncols=ncols,
                                         figsize=figsize, dpi=dpi,
                                         **kwargs)

    def setup_spines_ticks(self, ax_loc):
        """
        Make only the left and bottom spines/axes visible on the graph
        and place major ticks on them. Also set the minor ticks.
        """
        axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
        axs.spines[['left']].set_position('zero')
        axs.spines[['top', 'right']].set_visible(False)
        axs.xaxis.set_ticks_position('bottom')
        axs.yaxis.set_ticks_position('left')
        axs.xaxis.set_minor_locator(ticker.AutoMinorLocator())
        axs.yaxis.set_minor_locator(ticker.AutoMinorLocator())

    def plot_ODEs(self, de_data,
                  *,
                  num_pts: int = 1000,
                  species: list[str] | tuple[str] = (),
                  ax_loc: tuple = ()):
        """
        Plot the deterministic trajectories of all species obtained
        by obtaining the solution to a system of ODEs.

        Parameters
        ----------
        de_data : DEcalcs object
                 Data structure containing all the data related to
                 solving the system of ODEs.

        num_pts : int, default: 1000, optional
                 Number of points used to calculate DE curves at.
                 Used to approximate a smooth/continuous curve.

        species : sequence of strings, default: (), optional
                 An iterable sequence of strings specifying the species
                 names to plot. If no species are specified (the default),
                 then all species trajectories are plotted.

        ax_loc : tuple, optional
                If the figure is made up of subplots, specify the location
                of the axis to draw the data at.
                Ex: for two subplots, the possible values of `ax_loc`
                are (0, ) and (1, ). That's because the `self.ax` object is
                a 1-D array. For figures with multiple rows and columns of
                subplots, a 2-D tuple is needed.
        """

        species = list(de_data.odes.keys()) if len(species) == 0 else species

        self.setup_spines_ticks(ax_loc)
        axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
        axs.set(xlim=(0, de_data.odes_sol.t[-1]))

        # t, y = ode_sol.t, ode_sol.y.T  # values at precomputed time pts
        t = np.linspace(de_data.odes_sol.t[0], de_data.odes_sol.t[-1],
                        num_pts)  # time points for obtaining...
        y = de_data.odes_sol.sol(t).T  # an approximately continuous solution

        for i, sp in enumerate(list(de_data.odes.keys())):
            if sp in species:
                axs.plot(t, y[:, i], label=f"${sp}_{{DE}}$",
                         linestyle='--', linewidth=0.75, alpha=0.75)

        # axs.set(title="Deterministic trajectories")
        axs.set(xlabel=f"${de_data.time_unit}$", ylabel="$N$")
        axs.legend(loc='upper right')
        self.fig.tight_layout()

    def plot_trajectories(self, time, data,
                          *,
                          species: list[str] | tuple[str] = (),
                          ax_loc: tuple = ()):
        """ Graph simulation time trajectories. """

        self.setup_spines_ticks(ax_loc)
        axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
        axs.set(xlim=(0, time[-1]))

        species = list(data.keys()) if len(species) == 0 else species
        for sp, sp_data in data.items():
            if sp in species:
                trajs = sp_data['N'].T
                for traj in trajs:
                    axs.plot(time, traj, linewidth=0.25)

        axs.set(title="ABK trajectories")
        axs.set(xlabel=f"$t$ (sec)", ylabel="$N$")
        # axs.legend(loc='best')

    def plot_avg_std(self, time, data,
                     *,
                     species: list[str] | tuple[str] = (),
                     ax_loc: tuple = ()):
        """
        Graph simulation average trajectories and
        1-standard-deviation envelopes.
        """
        self.setup_spines_ticks(ax_loc)
        axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
        axs.set(xlim=(0, time[-1]))

        species = list(data.keys()) if len(species) == 0 else species
        for sp, sp_data in data.items():
            if sp in species:
                axs.plot(time, sp_data['N_avg'],
                         linewidth=1.5, label=f"${sp}$", alpha=0.5)
                axs.fill_between(time,
                                 sp_data['N_avg'] - sp_data['N_std'],
                                 sp_data['N_avg'] + sp_data['N_std'],
                                 alpha=0.5, linewidth=0)

        axs.set(xlabel="$t$ (sec)", ylabel="$<N>$")
        axs.legend(loc='upper right')
        self.fig.tight_layout()

    def plot_eta(self, time, data, *, species: list[str] | tuple[str] = (),
                 ax_loc: tuple = ()):
        """ Graph the coefficient of variation. """

        self.setup_spines_ticks(ax_loc)
        axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
        axs.set(xlim=(0, time[-1]))

        species = list(data.keys()) if len(species) == 0 else species
        for sp, sp_data in data.items():
            if sp in species:
                axs.plot(time, sp_data['eta'], linewidth=1.5, label=f"${sp}$")
                axs.plot(time, sp_data['eta_p'], linewidth=1, linestyle='--',
                         label=f"${sp}_{{Poisson}}$", color=(0.5, 0.5, 0.5))

        axs.set(title="Coefficient of Variation, $\\eta$")
        axs.set(xlabel=f"$t$ (sec)", ylabel="$\\eta$")
        axs.legend(loc='upper right')

    def plot_het_metrics(self, time,
                         proc_str: tuple[str, str],
                         proc_data: dict,
                         *, het_attr='k', ax_loc: tuple = ()):
        """
        Graph species- and process-specific metrics of population heterogeneity.
        """

        self.setup_spines_ticks(ax_loc)
        axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
        axs.set(xlim=(0, time[-1]))
        axs.set(xlim=(0, time[-1]),
                ylim=(0, 1.5 * np.max(proc_data[f"<{het_attr}_avg>"] + proc_data[
                    f"<{het_attr}_std>"])))
        axs.plot(time, proc_data[f'<{het_attr}_avg>'],
                 linewidth=1.5, label=f"$<{het_attr}>$", alpha=0.5)
        axs.fill_between(time,
                         proc_data[f"<{het_attr}_avg>"] - proc_data[f"<{het_attr}_std>"],
                         proc_data[f"<{het_attr}_avg>"] + proc_data[f"<{het_attr}_std>"],
                         alpha=0.5, linewidth=0)
        axs.tick_params(axis='y', labelcolor='blue')

        title = f"${proc_str[0].split(';')[0].replace(' ,' , chr(92) + 'hspace{10pt} ,').replace('->', chr(92) + 'rightarrow')}$"
        axs.set(title=title + (f"$, {proc_str[1]}$" if proc_str[1] != "" else ""),
                xlabel=f"$t$ (sec)")

        if het_attr == 'Km':
            axs.set_ylabel(f"$K_m$", color='blue')
        elif het_attr == 'K50':
            axs.set_ylabel("$K_{50}$", color='blue')
        else:
            axs.set_ylabel(f"${het_attr}$", color='blue')

        axs2 = axs.twinx()
        axs2.spines[['bottom']].set_position('zero')  # x axis
        axs2.spines[['right']].set_position(('axes', 1))  # y axis
        axs2.spines[['top', 'left', 'bottom']].set_visible(False)
        # axs2.spines['right'].set_color('red')
        axs2.set(ylim=(0, 1))
        axs2.tick_params(axis='y', labelcolor='red')
        axs2.yaxis.set_ticks_position('right')
        axs2.set_yticks([i for i in np.arange(0, 1.1, 0.1)])
        axs2.yaxis.set_minor_locator(ticker.AutoMinorLocator())
        axs2.grid(which='major', axis='y', color='r',
                  linestyle='--', linewidth=0.25, alpha=0.25)
        axs2.plot(time, proc_data['psi_avg'],
                  linewidth=1.5, label='$<\\psi>$', color='red', alpha=0.5)
        axs2.fill_between(time,
                          proc_data['psi_avg'] - proc_data['psi_std'],
                          proc_data['psi_avg'] + proc_data['psi_std'],
                          color='red', alpha=0.5, linewidth=0)
        axs2.set_ylabel("$\\psi$", color='red')

    def savefig(self, filename, **kwargs):
        """ Save the figure as a file. """
        graph_path = Path('.') / 'output'
        graph_path.mkdir(exist_ok=True)
        graph_path_svg = graph_path / filename
        self.fig.savefig(graph_path_svg, **kwargs)
        plt.close(self.fig)

Classes

class Graph (nrows=1, ncols=1, figsize=(5, 5), dpi=300, **kwargs)

Graphing class for displaying the results of AbStochKin simulations.

Notes

To successfully use the LaTeX engine for rendering text on Linux, run the following command in a terminal: sudo apt install cm-super.

Expand source code
class Graph:
    """
    Graphing class for displaying the results of AbStochKin simulations.

    Notes
    -----
    To successfully use the LaTeX engine for rendering text on Linux,
    run the following command in a terminal: `sudo apt install cm-super`.
    """

    # First, set some global matplotlib settings
    plt.rcParams['figure.autolayout'] = True  # tight layout
    plt.rcParams["figure.facecolor"] = 'lightgray'
    plt.rcParams['text.usetex'] = True
    plt.rcParams['axes.titlesize'] = 9
    plt.rcParams['axes.labelsize'] = 7
    plt.rcParams['xtick.labelsize'] = 6
    plt.rcParams['ytick.labelsize'] = 6
    plt.rcParams["legend.fontsize"] = 7
    plt.rcParams["legend.framealpha"] = 0.65

    def __init__(self, /, nrows=1, ncols=1, figsize=(5, 5), dpi=300, **kwargs):
        self.fig, self.ax = plt.subplots(nrows=nrows, ncols=ncols,
                                         figsize=figsize, dpi=dpi,
                                         **kwargs)

    def setup_spines_ticks(self, ax_loc):
        """
        Make only the left and bottom spines/axes visible on the graph
        and place major ticks on them. Also set the minor ticks.
        """
        axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
        axs.spines[['left']].set_position('zero')
        axs.spines[['top', 'right']].set_visible(False)
        axs.xaxis.set_ticks_position('bottom')
        axs.yaxis.set_ticks_position('left')
        axs.xaxis.set_minor_locator(ticker.AutoMinorLocator())
        axs.yaxis.set_minor_locator(ticker.AutoMinorLocator())

    def plot_ODEs(self, de_data,
                  *,
                  num_pts: int = 1000,
                  species: list[str] | tuple[str] = (),
                  ax_loc: tuple = ()):
        """
        Plot the deterministic trajectories of all species obtained
        by obtaining the solution to a system of ODEs.

        Parameters
        ----------
        de_data : DEcalcs object
                 Data structure containing all the data related to
                 solving the system of ODEs.

        num_pts : int, default: 1000, optional
                 Number of points used to calculate DE curves at.
                 Used to approximate a smooth/continuous curve.

        species : sequence of strings, default: (), optional
                 An iterable sequence of strings specifying the species
                 names to plot. If no species are specified (the default),
                 then all species trajectories are plotted.

        ax_loc : tuple, optional
                If the figure is made up of subplots, specify the location
                of the axis to draw the data at.
                Ex: for two subplots, the possible values of `ax_loc`
                are (0, ) and (1, ). That's because the `self.ax` object is
                a 1-D array. For figures with multiple rows and columns of
                subplots, a 2-D tuple is needed.
        """

        species = list(de_data.odes.keys()) if len(species) == 0 else species

        self.setup_spines_ticks(ax_loc)
        axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
        axs.set(xlim=(0, de_data.odes_sol.t[-1]))

        # t, y = ode_sol.t, ode_sol.y.T  # values at precomputed time pts
        t = np.linspace(de_data.odes_sol.t[0], de_data.odes_sol.t[-1],
                        num_pts)  # time points for obtaining...
        y = de_data.odes_sol.sol(t).T  # an approximately continuous solution

        for i, sp in enumerate(list(de_data.odes.keys())):
            if sp in species:
                axs.plot(t, y[:, i], label=f"${sp}_{{DE}}$",
                         linestyle='--', linewidth=0.75, alpha=0.75)

        # axs.set(title="Deterministic trajectories")
        axs.set(xlabel=f"${de_data.time_unit}$", ylabel="$N$")
        axs.legend(loc='upper right')
        self.fig.tight_layout()

    def plot_trajectories(self, time, data,
                          *,
                          species: list[str] | tuple[str] = (),
                          ax_loc: tuple = ()):
        """ Graph simulation time trajectories. """

        self.setup_spines_ticks(ax_loc)
        axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
        axs.set(xlim=(0, time[-1]))

        species = list(data.keys()) if len(species) == 0 else species
        for sp, sp_data in data.items():
            if sp in species:
                trajs = sp_data['N'].T
                for traj in trajs:
                    axs.plot(time, traj, linewidth=0.25)

        axs.set(title="ABK trajectories")
        axs.set(xlabel=f"$t$ (sec)", ylabel="$N$")
        # axs.legend(loc='best')

    def plot_avg_std(self, time, data,
                     *,
                     species: list[str] | tuple[str] = (),
                     ax_loc: tuple = ()):
        """
        Graph simulation average trajectories and
        1-standard-deviation envelopes.
        """
        self.setup_spines_ticks(ax_loc)
        axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
        axs.set(xlim=(0, time[-1]))

        species = list(data.keys()) if len(species) == 0 else species
        for sp, sp_data in data.items():
            if sp in species:
                axs.plot(time, sp_data['N_avg'],
                         linewidth=1.5, label=f"${sp}$", alpha=0.5)
                axs.fill_between(time,
                                 sp_data['N_avg'] - sp_data['N_std'],
                                 sp_data['N_avg'] + sp_data['N_std'],
                                 alpha=0.5, linewidth=0)

        axs.set(xlabel="$t$ (sec)", ylabel="$<N>$")
        axs.legend(loc='upper right')
        self.fig.tight_layout()

    def plot_eta(self, time, data, *, species: list[str] | tuple[str] = (),
                 ax_loc: tuple = ()):
        """ Graph the coefficient of variation. """

        self.setup_spines_ticks(ax_loc)
        axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
        axs.set(xlim=(0, time[-1]))

        species = list(data.keys()) if len(species) == 0 else species
        for sp, sp_data in data.items():
            if sp in species:
                axs.plot(time, sp_data['eta'], linewidth=1.5, label=f"${sp}$")
                axs.plot(time, sp_data['eta_p'], linewidth=1, linestyle='--',
                         label=f"${sp}_{{Poisson}}$", color=(0.5, 0.5, 0.5))

        axs.set(title="Coefficient of Variation, $\\eta$")
        axs.set(xlabel=f"$t$ (sec)", ylabel="$\\eta$")
        axs.legend(loc='upper right')

    def plot_het_metrics(self, time,
                         proc_str: tuple[str, str],
                         proc_data: dict,
                         *, het_attr='k', ax_loc: tuple = ()):
        """
        Graph species- and process-specific metrics of population heterogeneity.
        """

        self.setup_spines_ticks(ax_loc)
        axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
        axs.set(xlim=(0, time[-1]))
        axs.set(xlim=(0, time[-1]),
                ylim=(0, 1.5 * np.max(proc_data[f"<{het_attr}_avg>"] + proc_data[
                    f"<{het_attr}_std>"])))
        axs.plot(time, proc_data[f'<{het_attr}_avg>'],
                 linewidth=1.5, label=f"$<{het_attr}>$", alpha=0.5)
        axs.fill_between(time,
                         proc_data[f"<{het_attr}_avg>"] - proc_data[f"<{het_attr}_std>"],
                         proc_data[f"<{het_attr}_avg>"] + proc_data[f"<{het_attr}_std>"],
                         alpha=0.5, linewidth=0)
        axs.tick_params(axis='y', labelcolor='blue')

        title = f"${proc_str[0].split(';')[0].replace(' ,' , chr(92) + 'hspace{10pt} ,').replace('->', chr(92) + 'rightarrow')}$"
        axs.set(title=title + (f"$, {proc_str[1]}$" if proc_str[1] != "" else ""),
                xlabel=f"$t$ (sec)")

        if het_attr == 'Km':
            axs.set_ylabel(f"$K_m$", color='blue')
        elif het_attr == 'K50':
            axs.set_ylabel("$K_{50}$", color='blue')
        else:
            axs.set_ylabel(f"${het_attr}$", color='blue')

        axs2 = axs.twinx()
        axs2.spines[['bottom']].set_position('zero')  # x axis
        axs2.spines[['right']].set_position(('axes', 1))  # y axis
        axs2.spines[['top', 'left', 'bottom']].set_visible(False)
        # axs2.spines['right'].set_color('red')
        axs2.set(ylim=(0, 1))
        axs2.tick_params(axis='y', labelcolor='red')
        axs2.yaxis.set_ticks_position('right')
        axs2.set_yticks([i for i in np.arange(0, 1.1, 0.1)])
        axs2.yaxis.set_minor_locator(ticker.AutoMinorLocator())
        axs2.grid(which='major', axis='y', color='r',
                  linestyle='--', linewidth=0.25, alpha=0.25)
        axs2.plot(time, proc_data['psi_avg'],
                  linewidth=1.5, label='$<\\psi>$', color='red', alpha=0.5)
        axs2.fill_between(time,
                          proc_data['psi_avg'] - proc_data['psi_std'],
                          proc_data['psi_avg'] + proc_data['psi_std'],
                          color='red', alpha=0.5, linewidth=0)
        axs2.set_ylabel("$\\psi$", color='red')

    def savefig(self, filename, **kwargs):
        """ Save the figure as a file. """
        graph_path = Path('.') / 'output'
        graph_path.mkdir(exist_ok=True)
        graph_path_svg = graph_path / filename
        self.fig.savefig(graph_path_svg, **kwargs)
        plt.close(self.fig)

Methods

def plot_ODEs(self, de_data, *, num_pts: int = 1000, species: list[str] | tuple[str] = (), ax_loc: tuple = ())

Plot the deterministic trajectories of all species obtained by obtaining the solution to a system of ODEs.

Parameters

de_data : DEcalcs object
Data structure containing all the data related to solving the system of ODEs.
num_pts : int, default: 1000, optional
Number of points used to calculate DE curves at. Used to approximate a smooth/continuous curve.
species : sequence of strings, default: (), optional
An iterable sequence of strings specifying the species names to plot. If no species are specified (the default), then all species trajectories are plotted.
ax_loc : tuple, optional
If the figure is made up of subplots, specify the location of the axis to draw the data at. Ex: for two subplots, the possible values of ax_loc are (0, ) and (1, ). That's because the self.ax object is a 1-D array. For figures with multiple rows and columns of subplots, a 2-D tuple is needed.
Expand source code
def plot_ODEs(self, de_data,
              *,
              num_pts: int = 1000,
              species: list[str] | tuple[str] = (),
              ax_loc: tuple = ()):
    """
    Plot the deterministic trajectories of all species obtained
    by obtaining the solution to a system of ODEs.

    Parameters
    ----------
    de_data : DEcalcs object
             Data structure containing all the data related to
             solving the system of ODEs.

    num_pts : int, default: 1000, optional
             Number of points used to calculate DE curves at.
             Used to approximate a smooth/continuous curve.

    species : sequence of strings, default: (), optional
             An iterable sequence of strings specifying the species
             names to plot. If no species are specified (the default),
             then all species trajectories are plotted.

    ax_loc : tuple, optional
            If the figure is made up of subplots, specify the location
            of the axis to draw the data at.
            Ex: for two subplots, the possible values of `ax_loc`
            are (0, ) and (1, ). That's because the `self.ax` object is
            a 1-D array. For figures with multiple rows and columns of
            subplots, a 2-D tuple is needed.
    """

    species = list(de_data.odes.keys()) if len(species) == 0 else species

    self.setup_spines_ticks(ax_loc)
    axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
    axs.set(xlim=(0, de_data.odes_sol.t[-1]))

    # t, y = ode_sol.t, ode_sol.y.T  # values at precomputed time pts
    t = np.linspace(de_data.odes_sol.t[0], de_data.odes_sol.t[-1],
                    num_pts)  # time points for obtaining...
    y = de_data.odes_sol.sol(t).T  # an approximately continuous solution

    for i, sp in enumerate(list(de_data.odes.keys())):
        if sp in species:
            axs.plot(t, y[:, i], label=f"${sp}_{{DE}}$",
                     linestyle='--', linewidth=0.75, alpha=0.75)

    # axs.set(title="Deterministic trajectories")
    axs.set(xlabel=f"${de_data.time_unit}$", ylabel="$N$")
    axs.legend(loc='upper right')
    self.fig.tight_layout()
def plot_avg_std(self, time, data, *, species: list[str] | tuple[str] = (), ax_loc: tuple = ())

Graph simulation average trajectories and 1-standard-deviation envelopes.

Expand source code
def plot_avg_std(self, time, data,
                 *,
                 species: list[str] | tuple[str] = (),
                 ax_loc: tuple = ()):
    """
    Graph simulation average trajectories and
    1-standard-deviation envelopes.
    """
    self.setup_spines_ticks(ax_loc)
    axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
    axs.set(xlim=(0, time[-1]))

    species = list(data.keys()) if len(species) == 0 else species
    for sp, sp_data in data.items():
        if sp in species:
            axs.plot(time, sp_data['N_avg'],
                     linewidth=1.5, label=f"${sp}$", alpha=0.5)
            axs.fill_between(time,
                             sp_data['N_avg'] - sp_data['N_std'],
                             sp_data['N_avg'] + sp_data['N_std'],
                             alpha=0.5, linewidth=0)

    axs.set(xlabel="$t$ (sec)", ylabel="$<N>$")
    axs.legend(loc='upper right')
    self.fig.tight_layout()
def plot_eta(self, time, data, *, species: list[str] | tuple[str] = (), ax_loc: tuple = ())

Graph the coefficient of variation.

Expand source code
def plot_eta(self, time, data, *, species: list[str] | tuple[str] = (),
             ax_loc: tuple = ()):
    """ Graph the coefficient of variation. """

    self.setup_spines_ticks(ax_loc)
    axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
    axs.set(xlim=(0, time[-1]))

    species = list(data.keys()) if len(species) == 0 else species
    for sp, sp_data in data.items():
        if sp in species:
            axs.plot(time, sp_data['eta'], linewidth=1.5, label=f"${sp}$")
            axs.plot(time, sp_data['eta_p'], linewidth=1, linestyle='--',
                     label=f"${sp}_{{Poisson}}$", color=(0.5, 0.5, 0.5))

    axs.set(title="Coefficient of Variation, $\\eta$")
    axs.set(xlabel=f"$t$ (sec)", ylabel="$\\eta$")
    axs.legend(loc='upper right')
def plot_het_metrics(self, time, proc_str: tuple[str, str], proc_data: dict, *, het_attr='k', ax_loc: tuple = ())

Graph species- and process-specific metrics of population heterogeneity.

Expand source code
def plot_het_metrics(self, time,
                     proc_str: tuple[str, str],
                     proc_data: dict,
                     *, het_attr='k', ax_loc: tuple = ()):
    """
    Graph species- and process-specific metrics of population heterogeneity.
    """

    self.setup_spines_ticks(ax_loc)
    axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
    axs.set(xlim=(0, time[-1]))
    axs.set(xlim=(0, time[-1]),
            ylim=(0, 1.5 * np.max(proc_data[f"<{het_attr}_avg>"] + proc_data[
                f"<{het_attr}_std>"])))
    axs.plot(time, proc_data[f'<{het_attr}_avg>'],
             linewidth=1.5, label=f"$<{het_attr}>$", alpha=0.5)
    axs.fill_between(time,
                     proc_data[f"<{het_attr}_avg>"] - proc_data[f"<{het_attr}_std>"],
                     proc_data[f"<{het_attr}_avg>"] + proc_data[f"<{het_attr}_std>"],
                     alpha=0.5, linewidth=0)
    axs.tick_params(axis='y', labelcolor='blue')

    title = f"${proc_str[0].split(';')[0].replace(' ,' , chr(92) + 'hspace{10pt} ,').replace('->', chr(92) + 'rightarrow')}$"
    axs.set(title=title + (f"$, {proc_str[1]}$" if proc_str[1] != "" else ""),
            xlabel=f"$t$ (sec)")

    if het_attr == 'Km':
        axs.set_ylabel(f"$K_m$", color='blue')
    elif het_attr == 'K50':
        axs.set_ylabel("$K_{50}$", color='blue')
    else:
        axs.set_ylabel(f"${het_attr}$", color='blue')

    axs2 = axs.twinx()
    axs2.spines[['bottom']].set_position('zero')  # x axis
    axs2.spines[['right']].set_position(('axes', 1))  # y axis
    axs2.spines[['top', 'left', 'bottom']].set_visible(False)
    # axs2.spines['right'].set_color('red')
    axs2.set(ylim=(0, 1))
    axs2.tick_params(axis='y', labelcolor='red')
    axs2.yaxis.set_ticks_position('right')
    axs2.set_yticks([i for i in np.arange(0, 1.1, 0.1)])
    axs2.yaxis.set_minor_locator(ticker.AutoMinorLocator())
    axs2.grid(which='major', axis='y', color='r',
              linestyle='--', linewidth=0.25, alpha=0.25)
    axs2.plot(time, proc_data['psi_avg'],
              linewidth=1.5, label='$<\\psi>$', color='red', alpha=0.5)
    axs2.fill_between(time,
                      proc_data['psi_avg'] - proc_data['psi_std'],
                      proc_data['psi_avg'] + proc_data['psi_std'],
                      color='red', alpha=0.5, linewidth=0)
    axs2.set_ylabel("$\\psi$", color='red')
def plot_trajectories(self, time, data, *, species: list[str] | tuple[str] = (), ax_loc: tuple = ())

Graph simulation time trajectories.

Expand source code
def plot_trajectories(self, time, data,
                      *,
                      species: list[str] | tuple[str] = (),
                      ax_loc: tuple = ()):
    """ Graph simulation time trajectories. """

    self.setup_spines_ticks(ax_loc)
    axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
    axs.set(xlim=(0, time[-1]))

    species = list(data.keys()) if len(species) == 0 else species
    for sp, sp_data in data.items():
        if sp in species:
            trajs = sp_data['N'].T
            for traj in trajs:
                axs.plot(time, traj, linewidth=0.25)

    axs.set(title="ABK trajectories")
    axs.set(xlabel=f"$t$ (sec)", ylabel="$N$")
    # axs.legend(loc='best')
def savefig(self, filename, **kwargs)

Save the figure as a file.

Expand source code
def savefig(self, filename, **kwargs):
    """ Save the figure as a file. """
    graph_path = Path('.') / 'output'
    graph_path.mkdir(exist_ok=True)
    graph_path_svg = graph_path / filename
    self.fig.savefig(graph_path_svg, **kwargs)
    plt.close(self.fig)
def setup_spines_ticks(self, ax_loc)

Make only the left and bottom spines/axes visible on the graph and place major ticks on them. Also set the minor ticks.

Expand source code
def setup_spines_ticks(self, ax_loc):
    """
    Make only the left and bottom spines/axes visible on the graph
    and place major ticks on them. Also set the minor ticks.
    """
    axs = self.ax if len(ax_loc) == 0 else self.ax[ax_loc]
    axs.spines[['left']].set_position('zero')
    axs.spines[['top', 'right']].set_visible(False)
    axs.xaxis.set_ticks_position('bottom')
    axs.yaxis.set_ticks_position('left')
    axs.xaxis.set_minor_locator(ticker.AutoMinorLocator())
    axs.yaxis.set_minor_locator(ticker.AutoMinorLocator())