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Short Abstract

Molecular, cellular, or organismal populations are heterogeneous in that they
are made up of distinct individuals, each endowed with a unique set of properties
that determine how they will respond to various kinds of stimuli and conditions.
While the mechanisms that give rise to population heterogeneity are in many
cases known, its effects on the dynamics of coupled processes and population
time trajectories are not well understood. We have addressed this issue by
developing an algorithmic framework for taking into account different forms
of heterogeneity, thus allowing for the systematic study of individual variation
on the emergent properties of the collective. We show on theoretical grounds
and through simulations that the stochastic method we have developed, termed
agent-based kinetics, correctly predicts the time evolution of populations and
can be flexibly implemented for use in a variety of fields, such as biochemistry,
cell biology, ecology, and epidemiology. This monograph surveys examples from
the aforementioned fields to showcase the use of the algorithm, compares its
predictions to those of the deterministic and other stochastic approaches, and
examines the roles of noise in low copy number populations and the presence of
heterogeneity on a system’s dynamics. Special emphasis is given to the simula-
tion of modular collections of coupled processes, or motifs, that exhibit distinct
qualitative behaviors, such as continuous and discontinuous (hysteretic) switch-
ing, and oscillatory activity. We also present how our method can be used to
perform sensitivity analysis with respect to quantitative measures of population
heterogeneity.



Abstract

The presence of heterogeneity is a salient feature of molecular, cellular, and
organismal populations, and while significant progress has been made on under-
standing the mechanisms that give rise to it, its effects on a system’s dynamics
are not well understood. The consequences of heterogeneity are especially im-
portant to consider when all members of a species’ population have intrinsically
different propensities toward interacting with each other or are distinguishable
with respect to one or more quantifiable traits, as can be the case for popula-
tions studied in a variety of fields (e.g., cell biology, ecology, social sciences).
Accordingly, there is a need for flexible modeling approaches and simulation
tools that can account for an arbitrary level of population heterogeneity, allow
for the simulation of systems with dynamic parameter landscapes, and predict
population time trajectories and the uncertainty associated with them.

We address these issues by developing a method we term agent-based kinetics
(ABK), where we treat populations of species as consisting of a discrete number
of agents/individuals to generate ensembles of stochastic time trajectories based
on a predefined set of processes involving intra- and interspecies interactions.
ABK is a kinetic Monte-Carlo algorithm, uses the Markov property of chemical
reactions for simulating general processes (although it is easily adaptable to non-
Markovian processes), and, in its simplest implementation, assumes a well-mixed
system, thereby resulting in a nonspatial simulation. Given the computational
cost of assessing if any of all possible transition events occur for each agent
within a given time interval (rejection sampling), the algorithm is most efficient
and best suited for simulating the dynamics of small (hundreds or thousands of
agents) to low copy number populations.

We validate the algorithm’s effectiveness by simulating the time evolution
of homogeneous populations (where all agents of a given species have the same
kinetic rate constant associated with them) and comparing our results to pre-
dictions obtained through either solutions to ordinary differential equations
(ODEs), the stochastic simulation algorithm (SSA, or Gillespie’s algorithm),
or, in the simplest cases, the chemical master equation (CME). We begin by
simulating simple irreversible processes (0th-3rd order, and then generalize to
potential higher order processes in non-chemical systems) and use them as a
basis for extending our analyses to reversible and birth-death processes, the
Michaelis-Menten reaction scheme, and processes under regulatory control. We
also discuss efficient uses of the algorithm in modeling concurrent processes
featuring same- or mixed-order kinetics.

We continue the method’s validation by applying it to simulating signal-
response (SR) motifs consisting of species with homogeneous populations. These
motifs are modular collections of basic processes where the signal S represents
an external forcing (which can be continuous or discrete in nature; the latter
case can represent the population of a molecular messenger species, for instance)
and interspecies connectivity can lead to nonlinear effects on the population size



of the response element R. Such nonlinearity is a hallmark of the emergence of
complex behavior at the populations level. Specifically, we study linear, hyper-
bolic, and sigmoidal (or reversible switch) graded response motifs; discontinuous
switches (of the reversible or irreversible type) exhibiting hysteresis; motifs pro-
ducing an adaptive or homeostatic response; and oscillator systems (such as
multi-component negative feedback loops). We use the 2-component negative
feedback loop motif as an example to illustrate how the algorithm can be eas-
ily altered if a modeler is interested in assessing the effect of an explicit time
delay in a specific (non-Markovian) process within a motif, and we compare
the simulated time evolution to the numerical solution of a delay differential
equation (DDE). Furthermore, we apply the ABK methodology to foundational
models in population biology (Lotka-Volterra and Volterra models of predator-
prey interactions), epidemiology (Kermack-McKendrick model of infectivity),
and the study of oscillatory behavior in chemical systems (Brusselator). In the
case of the Brusselator, our simulation correctly predicts relaxation oscillations
and demonstrates that the algorithm can be used in systems exhibiting strong
separation of timescales.

Throughout our investigations, our simulations yield average population tra-
jectories that generally agree with deterministic expectations. However, they
also predict various phenomena that the deterministic approach cannot and that
have been theoretically predicted to occur and observed in real populations. Ex-
amples include the role of stochasticity in switching between a system’s stable
states (e.g., noise-induced switch state reversals in bistable switch motifs), and a
behavior we term persistent high-amplitude fluctuations in systems where noise
causes a stochastic trajectory to repeatedly take long excursions around a fixed
point when damped oscillations are deterministically predicted.

We then proceed to show how the algorithm can be adjusted to simulate the
time evolution of well-mixed populations participating in basic processes (1st

order, 2nd order, and birth-death processes) that exhibit compositional and/or
temporal heterogeneity/diversity with respect to the microscopic kinetic rate
constants associated with specific agents. We theoretically and numerically
compare the results of our analyses to those obtained from the simulation of ho-
mogeneous populations, thus highlighting the effects of heterogeneity on qualita-
tive features and various statistical properties of the computed trajectories. We
then generalize by showing how the method can be adapted to a graph-theoretic
representation of agent interactions within populations.

We continue our investigations by revisiting several motifs and present ef-
fects of different forms of heterogeneity on their dynamics. Specifically, we
show through different cases how population diversity can affect the sigmoidal
response motif. We then present the hysteretic switch resulting from mutual
activation with only one species exhibiting compositional heterogeneity in the
Michaelis constant of an enzymatic reaction. Our simulations show that statis-
tically significant deviations from the behavior of homogeneous populations can
result from such a simple example of a heterogeneous population structure. We
also revisit the case of the 2-component negative feedback loop motif, where we
introduce heterogeneity in the agent-specific time delay value of the feedback



reaction and present its effects on the presence of oscillatory activity. Finally,
we describe how sensitivity analysis can be performed using the ABK method
to assess the effect of metrics quantifying the degree of heterogeneity in a popu-
lation on a species’ average time trajectory. We demonstrate how this analysis
can be accomplished using the example of the mutual activation switch.

Taken together, the multitude of systems we have successfully simulated
highlight the adaptability of the ABK methodology to different representations
of a dynamical system, thus making it a suitable computational test bed for un-
derstanding the effects of the topology of interspecies connectivity, stochasticity,
and heterogeneity on population dynamics.
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Chapter 1

Introduction

The simulation of natural phenomena requires careful consideration of the in-
terplay between the level of detail that can serve as input and desired output for
a model, and the efficient use of available computational resources. Generally,
after the application of basic principles to an idealized system of interest yields
a satisfactory understanding of the underlying processes, a more realistic model
with explanatory power and that can make predictions commensurate with the
level of complexity observed in the real world is ultimately desired.1 To fulfill
these goals, the challenge of progressing from a simple to a more realistic imple-
mentation of a model is to increase the level of detail while keeping the problem
computationally tractable.

The most widely used approach for modeling the time evolution of popula-
tions in a variety of fields is differential calculus, and for good reason: calculus is
an accessible and powerful mathematical language for expressing how quantities
change with respect to each other and time, and various established techniques
can be used to analyze the dynamics of systems exhibiting nonlinearity (as is
most often the case in real systems). However, in the case of nonspatial sim-
ulations, this deterministic approach through the use of ordinary differential
equations (ODEs) has several obvious limitations:

1. Continuity is assumed for the variable representing the population size,
whereas real population sizes are discrete quantities. The validity of this
assumption is arguably unimportant to consider for large populations.
However, a mathematical representation of a system’s processes must ac-
count for discretization in the regime of small population sizes, where

1Of course, explanation and prediction are just two of the many reasons to build models.
Others include (adapted from Epstein, 2008): models inform which experiments to conduct
and guide the ensuing data collection, uncover a system’s core dynamics, suggest dynamical
analogies, discover new questions to ask, expose prevailing theories as incompatible with avail-
able observations or data, demonstrate the trade-offs between different approaches to solving
a particular problem, highlight the connection between apparent simplicity and complexity of
systems, train other modelers, and educate the general public. All of the above are relevant
to the models we will present in this work.

1



chance events can have a dramatic effect on future population trajecto-
ries. This regime is present in many contexts within the biological and
social sciences. Examples include a) there can be just a handful of intra-
cellular copies of a particular molecule (e.g., chromosomal DNA is found
in only one or two copies); b) the appearance of a heritable mutation in an
individual and its initial intergenerational spread through a population;
and c) the early stages of information dissemination (e.g., misinformation
and rumor spreading) within social networks.

2. The deterministic approach gives insight into the expected population
time trajectories but cannot provide a measure of the uncertainty in the
future value of a population size. Alternatively stated, ODEs do not
capture the variability that results from the randomness inherent to the
occurrence of real processes. For instance, chemical reactions are fun-
damentally stochastic processes, therefore a probabilistic description is
needed to model them. This is especially important in the case of low
copy number populations (Halling, 1989), where fluctuations of any mag-
nitude become more likely (first considered by Donnan, 1927) and may
dominate the system’s dynamics.

3. Even if one accepts the presence of a discrete population size, the use
of ODEs implicitly assumes that populations are homogeneous; that is,
there is no variability in the propensity of the members of a population to
react or interact with each other as part of a process that affects the dy-
namics of the system. The assumption of homogeneity has the advantage
of making the simulation of systems analytically and/or computationally
tractable. However, real populations can be characterized by a statistical
distribution of the value used to quantify a given trait, therefore they can
be considered heterogeneous with respect to it. Here are some examples
where consideration of the causes and/or effects of heterogeneity is impor-
tant for understanding biological processes:
a) In the realm of biochemistry, many protein species in higher organisms
are expressed as several closely related isoforms, each with its own char-
acteristic catalytic rate or affinity toward various binding partners.
b) In cell biology, several research groups (see Taniguchi et al., 2010; Al-
bayrak et al., 2016, among others) have documented a lack of correla-
tion between the gene-specific number of mRNA and protein molecules in
prokaryotic and eukaryotic cells, measured with single-molecule sensitiv-
ity in the same cell (for a review on this topic, see Liu et al., 2016). As a
result, a clonal population of cells can exhibit a high degree of phenotypic
heterogeneity at the level of individual cells, leading to both desirable and
harmful effects depending on the biological context (Raj and van Oude-
naarden, 2008).
c) Stochastically generated genetic variation leading to cellular hetero-
geneity occurs in multicellular organisms: mutations introduced randomly
in the genome during the early stages of development and subsequently
propagated through cell lineages lead to somatic mosaicism, the effects

2



of which are only beginning to be appreciated (Lim et al., 2017; Lodato
et al., 2015; Priest et al., 2016; Ju et al., 2017). Mosaicism can also result
from chromosomal nondisjunction events leading to, for example, gynan-
dromorphism (or sex-chromosome mosaicism), where an organism exhibits
both male and female characteristics.2
d) Numerous studies have reported on the diversity in cancer cell popu-
lations due to genetic or non-genetic factors and intratumor spatial het-
erogeneity (Vargas-Garcia et al. 2017; Nguyen et al. 2016; Swanton et al.
2015; Sharma et al. 2010; Gonzalez-Garcia et al. 2002; for a review, see
Marusyk and Polyak, 2010; (for a review in the context of signal trans-
duction networks, see Kolch et al., 2015)).
e) In epidemiology, real populations can have a skewed distribution of in-
dividual infectiousness (Lloyd-Smith et al., 2005) and “superspreading”
events or individuals have been documented in disease outbreaks (for an
example, see Lau et al., 2017). Accordingly, the presence or absence of
such highly infectious individuals in the early stages of a disease outbreak
can have a significant effect on the ensuing transmission dynamics and
epidemic spread.

The first two of the above problems namely, the discrete nature of popula-
tions and stochasticity can be dealt with by the chemical master equation
(CME) formalism developed more than 50 years ago (McQuarrie, 1967). The
CME describes the time-dependent probability distribution of the discrete pop-
ulation size of the species involved in a set of processes. However, the CME
can be solved analytically only in the simplest of cases (see Appendix A for
a presentation of some of these cases). The need for a numerical algorithm
that takes into account the inherent randomness of processes was addressed by
Daniel Gillespie (1977), who proposed an elegant method for simulating such
systems.3 The stochastic simulation algorithm (SSA) is a rejection-free algo-
rithm that monitors the time between productive reaction events and updates
the population sizes accordingly (see Appendix B for a description of the al-
gorithm). The rationale behind ignoring unproductive or nonreactive collisions
has to do with the assumption that the population is well-mixed or uniformly
distributed within the reaction vessel’s volume. This can be achieved by contin-
uous stirring (in the case of a chemical system), or by requiring that the number
of molecules far exceeds the number of transition events. The latter assertion
guarantees that the large number of nonreactive collisions between molecules
randomizes their positions in space and thermal energies (and therefore veloci-
ties) according to the Maxwell-Boltzmann distribution. Thus, for a well-mixed
system, the SSA ignores the exact positions and velocities of all molecules and
simply focuses on the actual reaction events. This is a significant simplification

2As an interesting aside, rare gynandromorphs have provided the opportunity to perform
elegant experiments on the interplay between genetic sex and hormonal influences on sexual
differentiation (e.g., Agate et al., 2003).

3The algorithm was in fact first proposed by Kendall (1950) for the specific case of simu-
lating birth-death processes.
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that makes the simulation computationally efficient. In addition, Gillespie’s al-
gorithm has been widely adopted in software packages (e.g., COPASI, Hoops
et al., 2006; StochSS, Drawert et al., 2016). Finally, we note that the SSA is an
exact numerical realization of the CME, since they are both derived (without
approximation) from the basic premise of the stochastic formulation of chemical
kinetics that any transition event has a finite probability of occurring (Gillespie,
1977; 2007).

Despite the SSA’s wide use, it cannot be easily adapted to account for nu-
anced situations involving intrapopulation heterogeneity. Consider for a mo-
ment the population of a species (molecular, organismal, etc.) that can be
described as consisting of a small number of subspecies, each with its own sub-
population and set of parameters that affect the probability of an individual
member of the subspecies undergoing a given process. In general, it may be
the case that not all subspecies of a given species participate in the same set
of processes (e.g., isoforms of a given protein species can have specific amino
acid sequences resulting in different binding partners, subcellular localizations,
etc.), thus necessitating a way of computing each subspecies’ time trajectory
separately from the others. One can argue that the SSA can still be used by
defining additional processes that treat subspecies as separate species. However,
this approach is cumbersome for increasing levels of heterogeneity (especially at
the limit of the number of subspecies approaching the species’ population size)
and would substantially increase the computational time that the SSA requires
for simulating the population time trajectories. It is therefore important to
have an alternative simulation tool for probing population dynamics that can
be easily configured to take into account an arbitrary level of population het-
erogeneity.

A reasonable approach is to explicitly model each individual’s fate and con-
tribution to a population’s evolution. This approach is referred to as agent- or
individual-based modeling (ABM or IBM).4 Several disciplines contributed to
ABM’s development, most notably computer science and the study of complex
systems. There is no universal consensus on how to precisely define the idea
of this modular entity, the agent. The minimal requirements are that an agent
is autonomous in that it can “operate” without external direction and can be
represented as a software object (Macal and North, 2010). Typically, agents are
treated as only being able to sense their local environment; this supports the
aforementioned idea of agent autonomy because the system is thereby decen-
tralized with respect to its behavior. It is common in applications of ABM for
an agent to obey a set of rules that dictate its behavior based on its interactions
with other agents and its environment. An early and famous example of how
basic rules can give rise to complex behavior is Conway’s Game of Life (Gardner,
1970), which is essentially a spatial (2-dimensional) agent-based model imple-
mented in the form of cellular automata. ABM has been used over the last two
decades in a diverse array of fields, such as economics, sociology, archeology, epi-
demiology, and microbiology (see Macal and North, 2010, and references therein

4The term particle-based modeling is also sometimes found in the literature.

4



for examples of ABM applications; for a review of ABM in modeling microbial
communities, see Hellweger and Bucci, 2009; Gorochowski, 2016, reviewed ABM
models of cellular populations in synthetic biology; an example of modeling syn-
thetic microbial biofilms can be found in Rudge et al., 2012). Interestingly, some
studies have highlighted how different the predictions of the ABM approach can
be from those of the deterministic one (e.g., Hellweger and Kianirad, 2007).

Despite the increased computational demands associated with tracking each
agent in a population, this modeling paradigm offers the important advantage
of modularity, thus allowing for explicit accounting of population heterogene-
ity. These properties also make agent-based models more comprehensible and
intuitive to understand: the trajectory of a population is a superposition of the
fates of individual agents. Furthermore, the agent-based approach allows for the
study of how the elementary interactions between the components of a system
give rise to the emergence of complex patterns and behaviors at the population
level. This bottom-up approach is useful for testing our understanding of the
basic processes that drive the dynamics of a system (as is of interest in the field
of systems biology/ecology), as well as for the design of particular arrangements
of species interactions that result in a desired behavior (i.e., synthetic biology).

Modeling heterogeneous populations has been explored by a handful of au-
thors, especially in the context of ecology and evolutionary biology. Ecosystems
are complex adaptive systems (Levin, 1998) and stochastic modeling approaches
have been applied to ecological problems (Lecca et al., 2013a). It is clear that
evolution cannot take place in the absence of heterogeneity, since selective pres-
sures would have no trait variations in individuals to act on (Wagner and Al-
tenberg, 1996). Given this perspective, a realistic representation of biological
populations necessitates the inclusion of the prospect of heterogeneity. Van Nes
and Scheffer (2005) have examined the effect of simple patterns of spatial het-
erogeneity due to varying environmental stresses as a system transitions to an
alternate stable state as a result of a catastrophic bifurcation. Fredrick et al.
(2013) performed a non-stochastic ABM simulation to show which mechanisms
contribute to variability in the intracellular level of phosphorus in phytoplank-
ton cells. Other researchers have modeled cell population dynamics by taking
into account the heterogeneity that results from stochasticity in cell division and
asymmetric partitioning of the intracellular volume and contents of the mother
cell (Mantzaris, 2006; Charlebois et al., 2011; Roy and Klumpp, 2018).

In this work, we address the aforementioned limitations of the determinis-
tic approach and account for population heterogeneity by establishing an al-
gorithmic framework for implementing the nonspatial stochastic simulation of
populations consisting of distinct agents. We treat agents in the simplest sense
possible: they are individuals that probabilistically move in a system’s state
space based on a kinetic view of the involved processes. Specifically, we con-
sider each agent participating in a process as being characterized by a single
parameter: the kinetic rate constant.5 As we will discuss in chapter 2, a rate

5Processes subject to stimulatory or inhibitory regulation and enzymatic reactions require
additional parameters, as will be discussed in Chapter 2.
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constant value is a proxy for the propensity of a molecule/agent to react and
can be used to calculate the probability of an agent-specific transition event.
Furthermore, we will show over the course of the next few chapters that the
ABK algorithm accurately predicts the time evolution of a species population
where each of its members has a rate constant value associated with it.

It is important to comment on how such a value can be specified for each
agent, given that kinetic constants are measured at the level of a population.
Agents of the same species with intrinsically different propensities can have their
rate constant values determined from measurements on a homogeneous popu-
lation of this type of agent. A common example of this in biochemistry is the
characterization of the kinetic properties of protein isoforms by performing in
vitro experiments on homogeneous populations of the respective isoforms. How-
ever, obtaining such data can be laborious, the extent of heterogeneity within
a population may not be known ahead of time, or such experiments may not
be possible (as in the case of organismal populations). Despite these limita-
tions, we believe that having a computational framework for assessing the effect
of different statistical distributions of the agent-specific rate constant values
(or other relevant parameters) on a system’s dynamics can be useful in under-
standing the potentially complex interplay between population heterogeneity
and stochasticity.

We will concern ourselves with systems exhibiting two types of heterogene-
ity: compositional and/or temporal.6 The first type simply refers to species
populations of kinetically distinct agents. On the other hand, temporal hetero-
geneity deals with populations with time-dependent kinetic rate constants, thus
allowing the simulation of systems with dynamic parameter landscapes. We
term our approach agent-based kinetics (ABK). In brief, the probability of each
agent participating in a process is evaluated for a given interval of simulated
time, and this numerical value is then compared to a random number drawn
from the uniform distribution in the unit interval to assess the binary-valued
state7 of this agent (a two-state agent) in the next time step. This repeated
sampling of the occurrence of a process, performed over all agents and for all
non-overlapping time intervals making up the total simulated time, constitutes
a Monte Carlo simulation of the population time trajectory. ABK provides a
mesoscopic representation of chemical systems by assuming they are well-mixed,
thus allowing the consideration of every possible interaction or collision between
molecules within a given time interval. That is, the method accounts for the
kinetics of individual molecules/particles, but does not explicitly consider their
physicochemical properties, diffusion, or other spatial considerations. In the
specific case of biochemical reactions occurring in the intracellular milieu, the

6We will primarily deal with compositional heterogeneity in the case studies we will describe
in the coming chapters. However, we do present how to account for time-dependent kinetic
parameters when introducing a general framework for treating heterogeneous processes in
Chapter 4.

7We use a binary value to keep track of the state each agent is in: 1 represents an agent
who is ‘alive’ (or that has not been consumed), and 0 for a ‘dead’ agent (one that has been
consumed, degraded, or transformed into an agent of a different species).
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assumption of well-mixed molecular populations ignores the crowding effects
or presence of structural barriers that may restrict the diffusion of molecules
in vivo (Turner et al., 2004). In recognition of this limitation, we classify the
simplest implementation of our method as nonspatial.

Finally, we briefly juxtapose our current work with related work done by
other researchers. Vestergaard and Génois (2015) have adapted the SSA for
simulating time-varying networks of individuals (temporal heterogeneity). Cai
et al. (2013) applied the SSA to an epidemic-spreading model with heterogene-
ity in the infectivity of individuals (compositional heterogeneity). The ABK
algorithm is simpler to set up and programmatically implement than the above
adaptations of the SSA while also being capable of simultaneously accounting for
both temporal and compositional heterogeneity. Furthermore, non-SSA model-
ing approaches that treat molecules as individual entities have been attempted
before by Morton-Firth and Bray (1998)8 and Pogson et al. (2006). The work
we present here differs from those efforts in several key ways:

1. The ABK transition probability expressions are algebraically different
from those used in the aforementioned studies. Furthermore, we present
no fewer than three different ways of deriving such suitable expressions
for a given elementary process comprised of species with homogeneous
populations.

2. The algorithmic structure of our method is different than that of the above
studies. For instance, Morton-Firth and Bray consider in each time step of
the simulation the possible interaction between a molecule and a “pseudo-
molecule” for the case of a 1st order reaction. In contrast, our algorithm
does not require consideration of any nonexistent or unintuitive pseudo-
interactions.

3. We introduce a general framework for determining transition probabilities
for a process of any nonnegative integral order (not just 1st or 2nd).

4. We demonstrate the algorithm’s effectiveness on basic processes and a
large number of collections of such processes (termed motifs) that ex-
hibit complex behavior such as adaptation, switching, oscillations, etc.
To our knowledge, the systematic study of these motifs in the context of
agent-based kinetic modeling and population heterogeneity has not been
documented before.

5. We built the ABK algorithm specifically for the purpose of modeling pop-
ulations that are heterogeneous with respect to the kinetic properties of
each agent in a population. Heterogeneity was not addressed in either of
the mentioned previous studies.

6. Our work allows us to probe the dynamics of populations that can be
represented as graphs or networks. As such, our methodology has a wide-

8Further developed into the software package StochSim (Le Novère and Shimizu, 2001).
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ranging scope and can be easily adapted for use in fields outside of the
molecular sciences.

1.1 Layout of this manuscript
We first present the application of the ABK method to homogeneous populations
before adapting it to handle cases of heterogeneity. This serves three primary
purposes:

1. It allows us to establish the algorithm’s theoretical underpinnings and
validate its predictions against those of the deterministic and stochastic
formulations.

2. It highlights the advantages of the stochastic approach to modeling system
dynamics over the deterministic one. It also sets the stage for showcasing
the advantages of the ABK method over other stochastic methods that
cannot be easily adapted to simulate heterogeneous populations.

3. It reflects the workflow we recommend for applying the ABK algorithm
to specific problems. The code implementation of the algorithm leads to
predictions that are compared to the results of other methods for homoge-
neous populations (ODE, SSA, CME) to ensure the code is bug-free. The
code can then be adjusted to account for the presence of heterogeneity in
the specific process(es) a researcher is interested in simulating.

In Chapter 2, we establish and validate the ABK methodology as applied to
homogeneous populations. This allows us to compare our stochastic simula-
tions to deterministic predictions (and, in some cases, to the solutions of the
CME formalism) and explore the latter’s limitations. We begin by investigating
irreversible processes of 1st and 2nd order, and then generalize to higher orders.
We also address the simulation of 0th order processes. We then present how
the algorithm can be used efficiently when simulating concurrent processes (i.e.,
when a species participates in two or more reaction paths/channels), and how
to calculate transition probabilities in processes under regulatory control. The
above few cases form a basis set for modeling more elaborate schemes, such as
a birth-death process, reversible reactions, and the Michaelis-Menten reaction
scheme.

Chapter 3 deals with the application of the ABK algorithm to collections
of coupled processes, called motifs, whose study reveals that the arrangement
of intra- and interspecies agent interactions can produce emergent properties or
complex behavior at the level of a population. We again focus on the simulation
of homogeneous populations to compare our results to those of the deterministic
approach, which we obtain by employing methods from the analysis of nonlinear
dynamical systems (see Appendix C for an introduction to Stability Analysis).
In each motif, we assign a species as a “Response element” (R, the output) whose
transient population level is dependent on the presence of a “Signal element”
(S, the stimulus or input) and the precise connectivity defined by the motif’s

8



processes. As such, each motif can be thought of as a modular functional unit
that acts on an input to produce an output. We characterize the sensitivity
of the response in each motif with a Signal-Response (SR) curve showing the
dependence of R on S. We present a series of such motifs in what can be
considered as tutorial form and in each case we test that our algorithm works
as expected and makes reasonable predictions.

All of the above simulations were performed on homogeneous populations.
In Chapter 4, we apply ABK to study the effect of heterogeneity on the emer-
gent properties and dynamics of the collective. We address this challenge by
laying the foundations for how the algorithm can be adapted to simulate the
time evolution of heterogeneous populations, where each agent has a specific ki-
netic constant value associated with each of the processes it participates in. We
initially consider well-mixed systems exhibiting two types of heterogeneity: com-
positional and/or temporal. A species consists of subspecies, the population of
each being made up of agents characterized by the same kinetic parameter value.
We find it helpful to consider a variation of this concept for 2nd and higher order
processes: intra- and interspecies interactions can be grouped into kinetically
distinct subinteractions. On the other hand, temporal heterogeneity deals with
populations where the time-dependence of the kinetic rate constants needs to
be accounted for. We show how the ABK method can accommodate both types
of heterogeneity and present simulations of small population sizes undergoing
irreversible 1st, 2nd order, and birth-death processes. We then generalize this
discussion to the application of the algorithm to graphs, where nodes represent
agents and the rate constants act as the weights of the connecting edges. There-
fore, the simulation of an arbitrary system (including non-biological ones) that
can be abstracted as a network of interacting nodes is possible. We conclude
Chapter 4 by revisiting several of the motifs presented in Chapter 3 to examine
the effect of heterogeneity on their dynamics. We also present the algorithmic
basis and an example of performing sensitivity analysis with respect to metrics
of population heterogeneity.

1.2 Methods: Computing environment and code
availability

We use the Matlab programming language (MathWorks, Natick, MA) for per-
forming all of the computations and coding of the examples presented in this
work, and its integrated development environment (IDE) for testing, debugging,
and running the code. Matlab is a high-level programming language, meaning
that it uses a level of abstraction to hide details of code execution at the machine
level (e.g., it manages physical memory allocation and addressing), thus allow-
ing the programmer to focus on algorithm development and testing of easily
readable code. Moreover, Matlab provides a particularly wide range of built-in
functions useful for both numerical and symbolic calculations, making it ideal
for designing, testing, and deploying scientific and engineering applications. We
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have written and tested all of our code in Matlab version R2017a.9 Simulations
were run on a PC with an Intel® 5th generation dual-core processor operating
at the frequency range of 1.6 − 2.7 GHz. We present selected examples of the
code used in our simulations in Appendix D, and all of our code is publicly
available at https://github.com/alexplaka/ABK (licensed under the terms of
the GNU General Public License, version 3.0). We also point the reader to each
section’s relevant code with hyperlinks to the appropriate repository folders in
marginal notes throughout the text.

9The majority of the code can also be run using GNU Octave, a free alternative to Matlab
(https://www.gnu.org/software/octave). However, we have not specifically tested our code
in that environment and, as such, cannot provide any guarantees on its performance.
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Chapter 2

Agent-Based Kinetics for
Homogeneous Populations:
Basic Processes

The method of agent-based kinetics (ABK) can be applied to study the time
evolution of any system where there is information on the kinetic parameters
describing the interactions between members of a population. We present the
following arguments from the perspective of chemical kinetics, but they can
be applied without loss of generality to any population composed of discrete
individual entities (termed agents), be they members of a human population,
cells, or protein molecules. Accordingly, the terms reaction and process, or
molecule and agent, are used interchangeably in this chapter.

ABK depends on calculating the probability of a process happening within
a specified time interval for each molecule in a population. Therefore, the
macroscopic kinetic rate constants, which may depend on concentrations or
population densities (and therefore the volume/area in which the population
of molecules/agents is in), must be converted to their microscopic counterparts
with units of number of molecules/agents undergoing a reaction/transition per
second (sec−1). We begin by formalizing this conversion of rates and rate con-
stants, and then derive the probability of an agent’s transition from one species
(or class/type of agents) to another using different approaches. We will first con-
sider elementary processes and then use them to build and characterize simple
combinations of them, such as reversible and birth-death processes, as well as
the Michaelis-Menten reaction scheme for enzymatic catalysis. Throughout this
chapter we will examine the effectiveness of the ABK method by comparing it
to deterministic (ODE) and stochastic (CME or SSA) predictions for the time
evolution of homogeneous populations, which consist of agents with identical
kinetic properties (we will extend these ideas to heterogeneous populations in
Chapter 4).
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2.1 Microscopic Rates and Rate Constants
Consider an elementary process of unspecified order in which species X is pro-
duced. We assume that the molecules are uniformly distributed within a volume
V and present in a single phase. Let [X] be the molar concentration of X. For
such a process, the macroscopic rate r′ is given by

r′ = d[X]
dt

. (2.1)

Since the rate r′ has units M/sec,1 multiplying both sides of equation 2.1 by the
product of Avogadro’s number and the volume (NAvV ) results in the following
expression, which we define to be the microscopic rate r,

r ≡ dNX
dt

, (2.2)

where NX is the number of molecules or agents of X. Note that the units of r are
the number of molecules of X produced per second (sec−1). Even though NX is
a discrete quantity and can therefore only have integer values, we shall consider
the process-specific expression for r and its consequences as the deterministic
approach to studying the time evolution of populations.

The relationship between r and r′ can also be expressed as follows:

r′ = d[X]
dt

=
d
(

NX

NAvV

)
dt

=
(

1
NAvV

)
dNX
dt

= 1
NAvV

r .

Therefore, the macro- and microscopic rates are generally related by

r′ = 1
NAvV

r . (2.3)

The result in equation 2.3 holds for a process of arbitrary overall order2 since we
have made no assumptions about how X is produced. It will be useful in that it
allows for the easy conversion of macroscopic rate constants to their microscopic
counterpart. We show below how this conversion can be done for processes of a
specific order.

0th order rate constant. The rate law for the process ∅ → X, where ∅ rep-
resents the (apparent) lack of dependence of the rate law on any reactants,3
is r′ = k′

0, with k′
0 being the rate constant of the process. Note that in

1Or, in general, units of concentration per unit of time.
2It is commonplace to refer to the molecularity of elementary processes. In this work, we

use the term order instead, in recognition of the fact that the methods we will develop are
general and extend beyond the realm of chemical reactions.

3We will use the symbol ∅ throughout this work in reaction diagrams to indicate 0th order
processes and to describe the result of a molecule’s degradation (or, equivalently, an agent’s
“death”).
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this discussion we use the convention of the subscript indicating the order
of the reaction. Substituting equation 2.3 for r′ into the rate law, we get

1
NAvV

r = k′
0

r = k′
0 (NAvV ) . (2.4)

Let
k0 = k′

0 (NAvV ) (2.5)
be the microscopic 0th order rate constant. The microscopic rate law then
becomes

dNX
dt

= r = k0 , (2.6)

as one would expect for a 0th order process by correspondence to the
macroscopic (molar) rate law. Note that the units of both r and k0 are
sec−1.

1st order rate constant. According to the law of mass action, the molar rate
law for the process A → X is r′ = k′

1[A]. Proceeding as before, we get

1
NAvV

r = k′
1

(
NA

NAvV

)
=
(

k′
1

NAvV

)
NA ,

r = k′
1 NA (2.7)

where NA is the number of molecules or agents of A. Therefore, for a 1st

order process,
k1 = k′

1 , (2.8)
and the microscopic rate law is r = k1NA. The above result is not surpris-
ing given that the macroscopic 1st order rate constant already has units
of sec−1.

2nd order rate constant. A second order process can have the form 2A → X
or A+B → X. We distinguish these two cases by referring to them as ho-
mologous and heterologous 2nd order processes, respectively. We consider
here the latter case, whose molar rate law is r′ = k′

2[A][B]. Substituting
equation 2.3 for r′ into the rate law, we get

1
NAvV

r = k′
2

(
NA

NAvV

)(
NB

NAvV

)
=
(

k′
2

NAvV

)
NA

(
NB

NAvV

)
.

After multiplying both sides by NAvV , we get

r =
(

k′
2

NAvV

)
NANB . (2.9)

Therefore, for 2nd order processes

k2 = k′
2

NAvV
, (2.10)
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and the microscopic rate law is r = k2NANB . The reader can ascertain
the fact that the result is identical for the case where 2A → X. Simple
inspection of the units reveals that, indeed, k2 has units of sec−1 (recall
that k′

2 has units of M−1 sec−1).

nth order rate constant. An analysis similar to the one described above shows
that for a reaction nA → X, or, more generally, for any reaction of overall
order n,

kn = k′
n

(NAvV )n−1 , n ≥ 0 , (2.11)

and kn has units of sec−1.

Equation 2.11 allows us to obtain the microscopic rate constant for any process,
although chemical systems are practically limited to 3rd order processes due to
the low probability of a simultaneous and effective collision between 3 molecules
needed for a reaction occurrence.

The relationship between the microscopic rate constant kn, obtained as de-
scribed above, and the stochastic reaction constant cn (as used by Gillespie in
his formulation of the SSA) is that they are the same in all cases except for
2nd and higher order processes involving reactant molecules of the same species
(e.g., A+A → X). In those cases, cn is greater than kn by a statistical factor re-
lated to the number of distinct pairs of reactant molecules. For a 2nd (or higher)
order process with two identical reactant molecules, this factor is 2! = 2, and
c2 = 2k2. Similarly, for three identical molecules the factor is 3! = 6 (Gillespie,
1977, p. 2343), etc.
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2.2 1st Order Processes
Consider a 1st order elementary process given by

A → X . (2.12)

We introduce three ways to evaluate the probability that a molecule of A tran-
sitions (is converted) to X within a finite time interval of arbitrary length. The
first two extend the deterministic formulation of the rate law for this process to
populations of discrete size, while the third treats transition events as Bernoulli
trials. We will see that the different approaches yield identical or closely related
expressions for the per-agent transition probability.

2.2.1 Transition Probability from the Integrated Rate Law
As shown in the preceding section, the microscopic rate law for such a process
is r = k1NA. Therefore,

−dNA
dt

= k1NA . (2.13)

Note that we derived this expression from the macroscopic rate law, which
is valid in the thermodynamic limit of infinitely large population sizes. As
we show in Appendix A.1, the above rate law is in fact true for the average
molecular population size (i.e., −d<NA>/dt = k1 <NA>; see discussion leading
to equation A.12) and is a consequence of microphysical considerations that lead
to the stochastic formulation of chemical kinetics (the chemical master equation,
or CME). Given this relationship, we now take the continuous deterministic
formulation (equation 2.13, without the designation for the average population
size for notational simplicity) and explore ways to derive probability expressions
for the transition A → X, where we treat populations as consisting of distinct
agents.

Separation of variables and integration over an arbitrary time interval ∆t =
t− to yields the microscopic integrated rate law for this process

NA(t)
NA(to)

= e−k1∆t, (2.14)

where NA(to) and NA(t) are the number of A agents at the beginning and end
of time interval ∆t, respectively.4

For a single agent of A, it is reasonable to consider that the larger the time
interval ∆t is the more likely its conversion to X becomes (or equivalently, the
less likely it is not to be converted to X). Moreover, it is our expectation

4A familiar result can be obtained by considering the half-life, λ, the elapsed period of time
for which the condition NA(t)/NA(to) = 1/2 is true. We then get k1 = ln 2/λ, whose substitution
into the integrated rate law provides an alternate form of equation 2.14,

NA(t)
NA(to)

= 2−∆t/λ. (2.15)
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that the greater the fraction of the original population of A that has remained
unreacted (or equivalently, the smaller the fraction that has reacted) the higher
the probability of a reaction event not occurring in a given time interval ∆t. In
the limiting case where NA(t)/NA(to) = 1, it is clear that no reaction events have
taken place within ∆t. This suggests that we are dealing with a slow process
and the probability of no reaction happening within a time interval of similar
scale to ∆t will be high. Conversely, we would expect the probability of no
reaction to be low when the process occurs fast enough so that NA(t)/NA(to) → 0
within ∆t.

These observations serve as motivation for the following definition of the
probability5 that a single molecule of A will not undergo a transition to X
within time interval ∆t:

PA↛X ≡ NA(t)
NA(to)

= e−k1∆t. (2.16)

Since having no transition (A ↛ X) and a transition (A → X) are mutually
exclusive and collectively exhaustive events,

PA→X = 1 − PA↛X (2.17)
PA→X = 1 − e−k1∆t. (2.18)

We will refer to the transition probability in equation 2.18 as Pint to reflect the
fact that it was derived using the integrated rate law for a 1st order microscopic
process (equation 2.14) and the definition of the probability of no reaction oc-
curring in ∆t (equation 2.16). In the following section, we will also derive an
expression for the transition probability using the differential form of the rate
law.

PA→X has the properties

lim
∆t→0

PA→X = 0 (2.19)

lim
∆t→∞

PA→X = 1 , (2.20)

as is desired for a probabilistic description of a transition event with a finite,
nonzero, positive rate constant. Also note that PA→X does not depend on the
population size of A, therefore it is constant for a given choice of ∆t.

It is useful to remember that the above result holds for any 1st order process
and not necessarily one involving a chemical reaction. For instance, consider
the biologically common and important case of the dissociation of a ligand (L)
bound to its receptor (R),

RL → R+ L . (2.21)

This process is typically reversible, although here we consider only the dissoci-
ation of the RL complex (we will discuss reversible processes in section 2.10).

5Sometimes referred to in the literature as the survival probability.
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In accordance with our previous remarks, the likelihood of the ligand remain-
ing bound to the receptor decreases as the considered time interval increases.
Therefore, the per-RL complex probability of dissociation is

PRL→R+L = 1 − e−kdiss∆t, (2.22)

where kdiss is the 1st order dissociation rate constant.

2.2.2 Transition Probability from the Differential Rate
Law

We start once again with separation of variables in the microscopic rate law of
a 1st order process (equation 2.13)

−dNA
dt

= k1NA ⇒ −dNA
NA

= k1 dt . (2.23)

We then discretize the differential quantity dt so that the time interval over
which the process is studied is sufficiently small but finite, ∆t = t − to, such
that the change in the number of agents of A, ∆NA = NA(t) − NA(to), is also
finite. Note that as we mentioned in the beginning of the preceding subsection,
NA in the differential rate law represents the average population size of A (see
Appendix A.1), therefore ∆NA need not be integer-valued. This discrete form
of the differential rate law is

− ∆NA
NA(to)

≈ k1∆t . (2.24)

Notice that the quantity on the left side of equation 2.24 is positive and has
a range in the interval [0, 1]. Intuitively, the greater the measurable fraction of
molecules of A undergoing a reaction in a finite time interval, the greater the
likelihood of conversion of A to X. Hence, we define the probability of a single
molecule of A reacting within time interval ∆t as

PA→X ≡ − ∆NA
NA(to)

≈ k1∆t . (2.25)

In addition to expression 2.18, this provides an alternate way to evaluate the
probability of the occurrence of a reaction, and we will refer to it as Pdif to
distinguish it from the one obtained using the integrated form of the rate law
(Pint, equation 2.18). It is evident that the right side of equation 2.25 has no
upper limit and, therefore, a judicious choice of ∆t must be made. Equation 2.25
suggests an upper limit for the value of ∆t is

∆tmax = 1
k1
. (2.26)

In the following subsections, we provide another proof for calculating per-agent
transition probabilities and discuss the relationship between Pint and Pdif .
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2.2.3 Transition Probability of a Bernoulli Process
Extracting transition probabilities from population-wide measure-
ments

An alternate way to determine the probability of reaction for a single molecule
of A is to treat the transition as a Bernoulli trial process. This is justified by the
fact that within a time interval of arbitrary length there are only two possible
outcomes: either a given molecule of A is converted to X, or it is not.

We are interested in determining the per-agent probability that the transi-
tion A → X occurs within a time interval ∆t, which we divide into s subinter-
vals of equal length. Let r be the observed average number of reaction events
within a population of A molecules per unit of time6 (microscopic rate), π̂ be
the population-wide probability of a reaction occurring in an ensemble of NA
molecules of A within a sufficiently small interval ∆t/s such that 0 ≤ π̂ < 1,
and p be the probability that each molecule of A has of reacting in ∆t/s. Given
the Bernoulli trial interpretation for this process, the expected value for the
population-wide number of transition events is sπ̂, and the following condition
is true

r∆t = sπ̂ . (2.27)
Since any molecule of A can react at any given time and we assume that a
reaction event is independent of other such events within the population of A,
the population-wide probability π̂ must be the sum of the per-agent probabilities
p. In other words,

π̂ =
NA∑
j=1

pj = pNA . (2.28)

Also, we know from our discussion of microscopic rates (section 2.1) that the
microscopic rate law for a 1st order process is r = k1NA, where k1 is the micro-
scopic rate constant. Substituting for r and π̂ into equation 2.27, we get

k1NA∆t = spNA (2.29)

p = k1∆t
s

. (2.30)

This provides a way to determine the per-agent probability of a transition event
from the kinetic parameter k1, which is measured at the level of a population.
Notice that this approach contrasts to the method developed by Gillespie (de-
scribed in Appendix B) where kinetic parameters are used to determine the
population-wide probability of a reaction event.

Transition events as Bernoulli trials

We consider the number of time steps until a reaction/transition takes place for
a particular agent of A, since at that point the agent is irreversibly converted

6The rate of a 1st order process can vary considerably depending on the fraction of
molecules of A that remain unreacted. We assume here that ∆t is small enough so that
r can be approximated as constant.
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to X. For instance, the probability that an A agent transitions in the first
subinterval of time length ∆t/s is p, in the second subinterval qp, then q2p, etc.,
where q is the probability that an agent of A does not transition during ∆t/s.
We also note that the probability of no reaction taking place in any of the s
subintervals of ∆t is PA↛X = qs. Summing the probabilities of all s+1 possible
outcomes for a given agent, we get

Ptot = p+ qp+ q2p+ ...+ qs−2p+ qs−1p+ qs. (2.31)
It is apparent that the first s terms of this sum constitute a geometric series
with common ratio q and first term p,

Ptot =
s∑
i=1

qi−1p + qs.

Using the formula for the finite sum of a geometric series, we rewrite Ptot as

Ptot = p (1 − qs)
1 − q

+ qs = (1 − qs) + qs = 1, (2.32)

where we used the fact that p+ q = 1 to simplify the expression. Therefore, the
number of time steps until a molecule of A reacts is geometrically distributed.

The per-agent probability that a transition takes place within ∆t is
PA→X = Ptot − PA↛X

PA→X = 1 − qs = 1 − (1 − p) s. (2.33)
Substituting for p using equation 2.30 and taking the limit as the number of
time subintervals becomes infinite gives

PA→X = lim
s→∞

[
1 −

(
1 − k1∆t

s

)s]
PA→X = 1 − e−k1∆t. (2.34)

We have arrived at the same result as in equation 2.18 (Pint), which was derived
from the microscopic integrated rate law (subsection 2.2.1). We will refer to
the above expression as Pber to indicate the fact that it was derived from the
Bernoulli trial interpretation of 1st order reaction events.

This result should come as no surprise since equation 2.33 is the cumula-
tive distribution function (CDF) of the geometric distribution (where there is
finite number, s, of time subintervals, and therefore a discrete number of re-
action occurrence failures until a successful transition), while equation 2.34 is
its continuous analogue (i.e., the CDF of the exponential distribution). The
memoryless property of this distribution confirms what we have observed in the
different forms of PA→X we have derived: the probability of a reaction event
depends on the duration of the time interval ∆t and is independent of how
much time had previously elapsed without an event occurrence. This agrees
with known 1st order processes. For instance, in radioactive decay it is impos-
sible to predict (according to quantum theory) when an unstable nucleus of an
atom will decay, regardless of when the atom first came into existence (Loveland
et al., 2006, p. 57).
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2.2.4 Relationship between Pint (or Pber) and Pdif

Given the above result (equation 2.34), we consider the Taylor expansion of
PA→X around ∆t = 0,

PA→X = k1∆t− (k1∆t) 2

2! + ...+ (−1)m+1 (k1∆t)m

m!
PA→X = k1∆t+ o(∆t) , (2.35)

where the little-o notation7 refers to quadratically small terms in ∆t, and is
used to indicate that what amounts to the error term of the above Taylor series
expansion is small compared to ∆t as ∆t → 0.

Therefore, for a sufficiently small ∆t, the probability of the transition A → X
can be approximated by

PA→X ≈ k1∆t , (2.36)

which is the same result as in equation 2.25 (Pdif ), derived from the micro-
scopic differential rate law (subsection 2.2.2). This shows that the Pdif way of
calculating the probability of a reaction for a single molecule of A is a linear ap-
proximation to the result in equation 2.34 (Pint or Pber), as shown in Figure 2.1.
Table 2.1 summarizes our findings thus far.

PA→X Derived from:

Pint = 1 − e−k1∆t Integration of microscopic rate law:
−dNA

dt = k1NA.

Pber = 1 − e−k1∆t Transition events treated as Bernoulli
trials.

Pdif = k1∆t
1) Discretized microscopic rate law:
− ∆NA

∆t ≈ k1NA.
2) Linear approximation to Pint or Pber.

Table 2.1 – Transition probability expressions for a 1st order process A → X.

7The little-o notation is defined such that when h(x) = f(x) + o (g(x)), which upon rear-
rangement is h(x) − f(x) = o (g(x)), indicates that

lim
x→a

h(x) − f(x)
g(x)

= 0 .

This succinctly conveys the idea that h(x)−f(x) is of smaller order than g(x), or, alternatively,
that h(x) − f(x) is negligible compared to g(x) for x in the neighborhood of some value a
(Apostol, 1967, p. 286). Hence, if the above definition describes the Taylor expansion of h(x),
then o (g(x)) can be thought of as the error of the approximation to the function h.
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Figure 2.1 – Comparison of Pint (or Pber) and Pdif as a function of ∆t. Pdif is the linear
approximation to Pint (or Pber) in the neighborhood of ∆t = 0. Note that Pint (or Pber)
asymptotically approaches 1 as ∆t → ∞, while Pdif increases without bound and reaches
the value 1 when ∆t = 1/k1. The plotted data were calculated using the sample value of
k1 = 0.8664 sec−1 (which corresponds to a 1st order process with a half-life λ = 0.8000 sec).

2.2.5 From Individuals to Populations
We hereby investigate what predictions the aforementioned per-agent probabil-
ities make for the entire population. As we already showed, the probability that
a molecule of A does not react is

PA↛X = e−k1∆t,

and the probability of its transition to X within ∆t is

PA→X = 1 − e−k1∆t.

We consider the probability that µ transition events will occur in ∆t within the
population of NA molecules. Thus, for µ = 0 the population-wide probability is

P̂µ=0 =
(
NA
0

)(
e−k1∆t)NA = e−k1NA∆t. (2.37)

If we do a Taylor expansion of the above expression around ∆t = 0, we get

P̂µ=0 = e−k1NA∆t = 1 − k1NA∆t+ o(∆t) . (2.38)

We continue by writing an expression for P̂µ when µ = 1:

P̂µ=1 =
(
NA
1

)(
1 − e−k1∆t) (e−k1∆t)NA−1

. (2.39)

21



Using the Taylor expansions 1 − e−k1∆t = k1∆t + o(∆t), and e−k1∆t = 1 −
k1∆t+ o(∆t) , we have

P̂µ=1 = NA
(
k1∆t+ o(∆t)

)(
1 − k1∆t+ o(∆t)

)NA−1

= k1NA∆t+ o(∆t) . (2.40)

Continuing this process with the per-agent probability expressions we have de-
rived, we can write a general expression for P̂µ,

P̂µ =
(
NA
µ

)(
1 − e−k1∆t)µ (e−k1∆t)NA−µ

, (2.41)

where this expression is true for an arbitrary integral number of transition events
0 ≤ µ ≤ NA.

We want to obtain a measure of the population-wide probability, P̂µ, of more
than one transition event occurring within ∆t. If we make the same substitutions
as above, then in the case of µ > 1, we have

P̂µ>1 =
(
NA
µ

)(
k1∆t+ o(∆t)

)µ(1 − k1∆t+ o(∆t)
)NA−µ

. (2.42)

It suffices to consider the above expression insofar as it shows that P̂µ>1 ∝ (∆t)µ,
and will therefore be o(∆t) in the neighborhood of ∆t = 0. Thus, P̂µ>1 goes to
zero faster than ∆t for multiple reaction events.

This result along with the previous two (equations 2.38, 2.40) are identical
with those obtained from the basic premise of stochastic chemical kinetics as
∆t → 0, and which lead to a derivation of the CME (Gillespie, 1992, pp. 420-
423). We therefore conclude that our agent-based approach is consistent with
the CME at the limit of ∆t → 0.

To show that 2.41 is a distribution, we consider the sum of probabilities for
all possible numbers of transition events (0 ≤ µ ≤ NA),

P̂tot =
NA∑
µ=0

(
NA
µ

)(
1 − e−k1∆t)µ (e−k1∆t)NA−µ

, (2.43)

which is obviously a binomial expansion and is equal to 1.

P̂tot =
[(

1 − e−k1∆t)+
(
e−k1∆t)]NA = 1 (2.44)

Therefore, µ is a binomially-distributed variable with mean

<µ>= NA
(
1 − e−k1∆t) . (2.45)

This is not a surprising result given that we assumed the 1st order process to
consist of a sequence of Bernoulli trials.
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Since ∆t can be made arbitrarily small, we expect µ to be a small nonnega-
tive integer in the general case. In accordance with this expectation, we consider
the case where NA ≫ µ, and

(
NA

µ

)
becomes

NA!
(NA − µ)!µ! = NA(NA − 1) · · · (NA − µ+ 1)

µ! ≈
Nµ
A

µ! . (2.46)

(We will have more to say about how reasonable this approximation is for small
µ in the following paragraph.) We can substitute this result into equation 2.41,
as well as the expansion 1 − e−k1∆t = k1∆t + o(∆t), and NA − µ ≈ NA. The
expression for P̂µ becomes

P̂µ = Nµ
A

µ!
(
k1∆t+ o(∆t)

)µ (
e−k1∆t)NA

P̂µ = (k1NA∆t)µ

µ! e−k1NA∆t + o(∆t) . (2.47)

It is evident that as ∆t → 0, P̂µ is a homogeneous Poisson distribution8 with
average number of transition events < µ >= k1NA∆t = r∆t, where r is the
microscopic rate of a 1st order process. Notice that this average value of µ
is the first order approximation to the result from the binomial distribution
(equation 2.45) as ∆t → 0.

The significance of this result that the number of transition events, µ, is
Poisson-distributed is that the time between transition events (interoccurrence
time) asymptotically approaches the exponential distribution as ∆t → 0. The
same distribution is predicted starting from the basic premise of the stochastic
formulation of chemical kinetics: namely, that any transition event has a finite
probability of occurring (Gillespie, 1977, 2007). Indeed, the CME predicts that
the interoccurrence time is exponentially distributed (see Appendix B), and
this fact is precisely the starting point for the implementation of Gillespie’s
algorithm. We have thus shown that the per-agent transition probabilities we
have derived lead to the expected distribution of the population-wide number
of transition events in the limit of infinitesimally small time intervals.

This result depends heavily on the approximation to the binomial coefficient,
which is reasonable only for small values of µ and NA ⪆ 100. For instance, for
a modestly-sized population made up of 100 molecules in which two reactions
happen within a given time interval, the binomial coefficient is

(100
2
)

= 4950,
while 1002

2! = 5000, for approximately a 1% difference between the two values.
For smaller populations, the error increases rather fast (e.g., for NA = 10 and
µ = 2, the error is 11%). However, in the special cases where µ = 0 or µ = 1,
the result of equation 2.46 is exact. That is,

(
NA

0
)

= 1 and
(
NA

1
)

= NA. Thus, if
we assume that ∆t is small enough so that at most one reaction event can occur
in the population (which is supported by equation 2.42 and ensuing discussion),

8A homogeneous Poisson distribution assumes that the process occurs at a constant rate.
In our case, as ∆t → 0 the rate of the process can be considered constant for the duration of
the time interval.
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then equation 2.47 is only an approximation insofar as NA − 1 ≈ NA (when
µ = 1).

We address the issue of how small ∆t should be in order for µ ∈ {0, 1} at
the end of the following subsection.

2.2.6 The ABK Algorithm and its Implementation
For the unidirectional or irreversible process A → X, only molecules of A can
transition to X and we need to keep track of the populations as a function of
time. We represent the initial population of each species by an array (or row
vector) of size equal to that of the initial population’s, and each placeholder of
the array can store the state of that particular member of the population. One
way to represent the state of each molecule/agent is a binary system: 0 if the
agent does not yet exist or has already been converted to another species, and 1
if it is a member of the population of that particular species (we can alternatively
describe the state of each agent as ‘dead’ or ‘alive’). This way, each member of
the populations is treated as a distinct entity for which a transition probability
can be calculated.

The ABK algorithm can be generally broken down into a small number of
distinct steps. We consider the total time T over which we wish to simulate the
process as consisting of non-overlapping subintervals ∆t (whose duration can be
fixed or variable depending on which method a modeler chooses to use). The
nth iteration of the algorithm determines the change in the population size for
the nth time interval ∆t using the following sequence of steps:

1. Evaluate the probability of transition PA→X for each molecule of A present
at time tn using either the Pint (or Pber) or Pdif formalism described in
the previous section.

2. Draw a random number ru from the standard uniform distribution9 in the
interval (0, 1).

3. Check the condition that ru < PA→X for each agent/molecule of A. If
the condition is true, then the state of that particular molecule of A is
changed to 0, while a molecule of X is created and its state is set to 1. If
the condition is false then the state of molecule A does not change.

4. Sum up the number of A and X agents/molecules in their respective pop-
ulations after all probability conditions have been checked. This is the
updated species population sizes at tn+1, the time point corresponding to
the end of time interval ∆t.

5. Update the absolute time tn+1 = tn + ∆t.
9All pseudo-random number generators are based on deterministic algorithms, therefore

the generated sequence of numbers has a characteristic period. We use here the Mersenne
Twister generator (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html) that has
a particularly long period of 219937 − 1.
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This procedure can be easily implemented in any programming language using
the for loop structure (or its equivalent) for sampling through all members of
the populations and for all time intervals until time T is reached.

Follow this link to
see all of the code
used for the
simulations in this
section.

We tested the ABK algorithm for the 1st order process A → X with a rate
constant k1 = 0.8664 sec−1, which corresponds to a half-life λ = 0.8000 sec (see
representative Matlab code on page 274). Figure 2.2 shows two sample runs of
the simulation for different initial populations of A, while the initial population
of X is 0 in all cases. We used a fixed time step of ∆t = 0.10 sec and the
Pint method of determining transition probabilities (equations 2.18, 2.34). The
increased granularity in the time evolution of the population of A becomes more
evident as populations of smaller size are considered. The solid green curve is the
solution to the microscopic differential rate law for the process (equation 2.14),
and is shown for comparison to the results of the stochastic simulation.

The simulation of a process through the ABK methodology can be repeated
a user-specified number of times such that the ensemble of simulated time trajec-
tories can be used to obtain statistical measures of the system’s evolution. As an
example, we plot in Figure 2.3 the average and standard deviation for the popu-
lation size of A, NA(t), after repeating the simulation 50 times. The time evolu-
tion for decreasing orders of magnitude of the initial population of A is shown,
along with insets zooming in at the time interval from 2.0 − 2.4 sec to highlight
the relative scale of the standard deviation in each case. The simulation curves
match the theoretical curves obtained from the integrated rate law exceed-
ingly well (coefficient of determination,10 R2 = 0.9999, 0.9999, 0.9998, 0.9987
for NA,i = 10000, 1000, 100, 10, respectively), especially considering the small
sample trajectory size (n = 50). The most visibly granular time evolution of
the population size is for NA,i = 10, but it still agrees with the theoretical curve
obtained from the integrated rate law (green dotted curve).

It is instructive to compare the standard deviation values obtained in each
case and normalize them to the initial population size of A. Figure 2.4a shows
that the relative standard deviation increases for progressively smaller popula-
tions and that they match those predicted by the CME. Specifically, the CME
standard deviation for a 1st order process can be shown to be (see Appendix A.1
for a derivation of the expression for the variance, equation A.23),

SDev (<NA(t)>) =
√
NA,i e−k1t (1 − e−k1t) . (2.49)

10The coefficient of determination, R2, is a statistic that can be interpreted as the proportion
of the variance in the dependent variable that can be predicted from the independent variable.
R2 can be computed for a set of estimates yi and the corresponding predicted values fi using
the definition

R2 = 1 −
SSR

SST
, (2.48)

where SSR =
∑

i
(yi − fi)2 is the sum of the squared residuals (a metric that is minimized

in regression analyses), and SST =
∑

(yi − y)2 is the total sum of squares. This generally
works for assessing the fit of any data to either a linear or nonlinear predicted curve.
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Figure 2.2 – Sample runs for A → X for populations of different sizes. Two sample
simulation runs using the ABK algorithm are shown for the 1st order conversion A → X. We
consider initial populations of NA,i = 500, 100, 25, 10 molecules/agents of A respectively.
In all cases, the half-life of the process is λ = 0.8000 sec, and therefore the microscopic
rate constant is k1 = ln 2/λ = 0.8664 sec−1. We calculated the transition probabilities using
the Pint (equation 2.18) expression, and used fixed time step increments of ∆t = 0.10 sec.
The green curve is the solution to the differential equation describing this process (i.e., the
integrated rate law). Note that the plots differ in the scaling of the vertical axis.
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Figure 2.3 – Time course of A → X with populations of different initial size. ABK simula-
tions of the 1st order process A → X with a fixed time step of ∆t = 0.01 sec, rate constant
k1 = 0.8664 sec−1 (λ = 0.8000 sec), and using the Pint transition probability expression
were performed for homogeneous populations of initial size NA,i = 10000, 1000, 100, 10
molecules/agents, respectively. In each case, we repeated the simulation 50 times and
plotted the average population size of A and its standard deviation at each time step.
Blue curve: average population size, < NA(t) >; gray dashed curves represent the one-
standard-deviation envelope (average ± 1 standard deviation). For populations of initial size
NA,i = 10000, 1000, 100 (plots a-c) the inset graph is an enlarged window of the time
interval 2.0 − 2.4 sec to highlight the difference in the magnitude of the standard deviation.
The dotted green curve in panel d (NA,i = 10) corresponds to the solution to the differential
equation (it is not shown in plots a-c for the sake of clarity since the simulated population
average is virtually indistinguishable from the deterministic solution). Note that the vertical
axis is scaled differently in the plots.
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The maximum standard deviation occurs at t = ln 2/k1 = λ, and has a value of

SDevmax ≡ SDev

(
<NA

(
ln 2/k1

)
>

)
=
√
NA,i

2 . (2.50)

Upon dividing both sides by NA,i, we get

SDevmax
NA,i

= 1
2
√
NA,i

. (2.51)

Finally, we transform this equation into a linear relationship between logarith-
mic quantities,

ln
(
SDevmax
NA,i

)
= −1

2 ln (NA,i) − ln 2 . (2.52)

Figure 2.4b shows a graph of ln (SDevmax/NA,i) vs. ln(NA,i), where we observe a
very close agreement between the CME (dotted line) and ABK data (correlation
coefficient, R = 0.9998).

As we showed in a preceding section, the 1st order transition A → X is a
Poissonian process for small ∆t as simulated with the use of the ABK algo-
rithm (equation 2.47). Therefore, the distribution of time between events, or
interoccurrence time, should be described by the exponential probability density
function (PDF)

f(t, k1) = k1 e
−k1t. (2.53)

We now show that our simulations produce a distribution that agrees with the
exponential probability density function. We simulated the time evolution of
different initial populations of A and kept track of the time at which each agent
transitioned to X. We repeated the simulation 1000 times for the same value
of k as before, fixed time step increments of ∆t = 0.01 sec, and the Pber form of
transition probabilities. We then constructed a histogram of the fraction of tran-
sition events within successive time intervals of the simulated time. Figure 2.5
shows such a histogram with 20 bins. We verified that the choice of initial pop-
ulation size, NA,i, has no effect on the fractional values obtained, as would be
expected for a 1st order process where the agents transition independently of
each other. The histogram is in excellent agreement with the exponential PDF
(R2 = 0.9997), which is scaled appropriately to account for the chosen number
of bins.11 Therefore, the ABK algorithm produces a distribution of transition
events that matches the theoretical expectation.

We now examine how the choice of using the Pint (or Pber) or Pdif expressions
of determining transition probabilities and the duration of time interval ∆t
affect the agreement between the ABK-simulated population time courses and
the theoretically expected ones (i.e., based on the deterministic integrated rate
law or CME treatment of this process). We use the following approach: 1) We
determine the average population size and its standard deviation at each time

11The scaled form of the exponential PDF is f(t, k1) = T
bins k1 e−k1t, where T represents

the total simulated time. In this case, for T = 10 sec and 20 bins, the scaling factor is 1/2.
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Figure 2.4 – Standard deviation of 1st order process average trajectory. A compar-
ison between the relative standard deviation values obtained through repetitions of the
ABK simulation (n = 1000) and the values predicted from the solution to the CME
for different initial population sizes. a) Relative standard deviation for initial populations
NA,i = 1000, 500, 100, 50, 30, 10 as a function of time. b) We show the maximum relative
standard deviation values (at t = ln 2/k1 = λ) for different initial population sizes (blue filled
circles) and compare them to the theoretical prediction from the CME (dash-dotted red line;
see equation 2.52; correlation coefficient, R = 0.9998).
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Figure 2.5 – Distribution of 1st order transition events. Histogram of the fraction of
species A agent transitions within successive simulated-time intervals of duration 0.50 sec.
The data was aggregated over 1000 repetitions of the ABK simulation with fixed time step
increments of ∆t = 0.01 sec, NA,i = 10, and the Pber form of transition probabilities.
We have superimposed the PDF of the exponential distribution, f(t, k1) = k1 e−k1t (green
curve), to highlight the agreement between the simulation results and theoretical expectation
(R2 = 0.9997).

point from an ensemble of simulated trajectories (in this case, n = 500), thus
generating curves like those shown in Figure 2.3; 2) We then obtain the best-fit
parameter kest using NA(t) = NA,i e

−kest t for the curve corresponding to the
average population size, and separately for the curves defining the one-standard-
deviation envelope (see sample Matlab code for fitting a curve to a set of data
points on page 288). We plot kest vs. ∆t for populations of different initial size
(Figure 2.6), where the error bars represent the range of kest values defined by
the one-standard-deviation envelope of the average population time trajectories.
The overall trend is that the simulations using the Pint implementation closely
agree with the true value of k1 = 0.8664 sec−1 (e.g., for NA,i = 10, t-test p =
0.5245). Note that this result is typical for all of the differently sized populations
presented here. On the other hand, the Pdif transition probabilities produce
time trajectories overestimating the true value of k1 as the fixed time interval ∆t
increases. This effect is much more pronounced for larger populations (clearly
visible in Figure 2.6a,b), while for the small populations of NA,i = 25 and
10 molecules/agents (Figure 2.6e,f) the Pint and Pdif results agree with each
other and the true value of k1 for smaller values of ∆t. More specifically, for
NA,i = 10, the Pdif -obtained kest agrees with the true value of k1 for ∆t =
0.01 − 0.06 sec (t-test p = 0.0184, signifying failure to reject the null hypothesis
for a level of significance α = 0.01), while at higher values of ∆t, kest > k1.
We observed the same effect for small populations of similar size: there is a ∆t
value below which the Pdif -derived kest values are not statistically significantly
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different from k1 = 0.8664 sec−1. Moreover, the threshold ∆t value for statistical
significance increases as NA,i decreases. Finally, the error bars in the plots of
Figure 2.6 verify that the variance of the average time trajectories increases
with smaller population sizes, in accordance with our previous observations
(Figures 2.3 and 2.4).

We conclude based on the above data that the Pdif implementation of the
transition probability for a 1st order process can be used as an alternative to
the Pint one for small population sizes and ∆t values.

Computational speed using Pint vs. Pdif
Figure 2.6 clearly shows that using the ABK algorithm with the Pint transition
probabilities gives consistently accurate results for a wide range of ∆t values.
However, even though Pdif is an approximation to Pint and its effectiveness
is limited to smaller values of ∆t, we determined if there is an advantage in
computational speed given the algebraic simplicity of the Pdif expression. We
used a simple Matlab script with a for loop to assess the speed of merely
computing the transition probability and found that the Pdif implementation
is faster than Pint by approximately up to an order of magnitude. This fact
may be considered when seeking a balance between choosing a sufficiently small
value of ∆t (which leads to more iterations of the algorithm) and the savings in
computational time afforded by computing the Pdif expression. The speed of
computing Pdif may be especially useful to consider in cases where the transition
probability needs to be computed at each iteration of the algorithm, such as
when simulating systems of reactions that include 2nd order processes (as we
will see in the next section), or when the algorithm uses variable time step
increments (discussed below).

Fixed vs. variable ∆t increments

The distribution of the length of ∆t is also a consideration in the algorithm.
We tested the following approaches:

1. ∆t is of constant or fixed length throughout the simulation. All of the
results presented in this section thus far have used fixed time step incre-
ments.

2. ∆t is variable, depends inversely on the population size, and is reevaluated
at each time-advancing iteration of the algorithm. One way to implement
this is to consider the discretized differential rate law for this process (see
subsection 2.2.2). We may choose the average change in the population
size within ∆t to be 1, such that

− <∆NA> = 1 = k1 NA(t) ∆t

∆t = 1
k1 NA(t) . (2.54)
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Figure 2.6 – Effect of time interval ∆t on accuracy of Pint (or Pber) and Pdif expres-
sions. We ran the ABK simulation for the conversion A → X with half-life λ = 0.8000 sec
(k1 = 0.8664 sec−1), in populations of initial size NA,i = 10000, 1000, 100, 50, 25, 10
molecules/agents, and different values of fixed time step increments (∆t) in the range of
0.01 to 0.10 sec. For each combination ofNA,i and ∆t values, we repeated the simulation 500
times and obtained the average population size for each time step in the reaction time course.
We then fit the resulting time course curves to the equation <NA(t)>= NA,i e

−kest t to
obtain kest, the rate constant which provides the best fit to the data. We performed the
same procedure to the one-standard-deviation envelope of the time course data to obtain an
estimate for the magnitude of the uncertainty in the kest values (shown as error bars in the
plots). The results for the different initial populations show how using Pint (or Pber; blue)
or Pdif (red) affects kest. The green line shows the true value of k1 for comparison. Notice
that the scale of the vertical axis values changes for each row in the tableau of plots.
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This value of ∆t will, on average, produce a change in the population size
of just one molecule/agent. The choice of <∆NA>= 1 is arbitrary and
can be made smaller12 if a finer sampling of ∆t is desired (at the cost of
additional computational effort).

3. Given that the exponential distribution describes the time between events
in a Poisson process (as a 1st order process is known to be), we can treat
∆t as exponentially distributed with an average value obtained from the
numerical result of equation 2.54. We therefore reevaluate ∆t at every iter-
ation (time step) of the algorithm by drawing a (pseudo-)random number
from the exponential distribution with mean 1/k1NA(t). Note that this
choice of ∆t will be used to evaluate the transition probability of each
agent within a given time step.

We have indeed performed simulations using variable ∆t values obtained through
approaches 2 and 3, and observed just as good of an agreement of the stochastic
average time trajectories (and their variances) with the deterministic (or CME)
prediction (results not shown).

12A fractional value for − <∆NA> is acceptable since it represents the average change in
population size during ∆t.
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2.3 2nd Order Processes
We consider the following 2nd order elementary processes

A+A → X , (2.55)

and
A+B → X , (2.56)

with microscopic kinetic constant k2 (with units of sec−1) and X is a generalized
product species. We refer to 2.55 as a homologous 2nd order process because the
molecules/agents participating in the reaction are of the same species, while 2.56
represents a heterologous process.

As we did for 1st order processes, we proceed to derive different forms of the
transition probability and compare their accuracy.

2.3.1 2A → X

Transition probability from the canonical rate law

The microscopic rate law for this process with respect to A, rA,13 is

rA = −dNA
dt

= k2N
2
A . (2.57)

This is the canonical form of a 2nd order reaction rate law as presented in
the study of chemical kinetics. The underlying assumption that this statement
applies to large populations of A will become apparent later in this subsection
when we discuss the agent-based rate law.

We consider an arbitrary time interval ∆t = tn+1 − tn, where the variable n
can represent the nth time step of the ABK algorithm. Upon integration of the
above rate law, we obtain

1
NA(tn+1) − 1

NA(tn) = k2∆t , (2.58)

where NA(tn) and NA(tn+1) are the number of molecules/agents of A at the
beginning and end of ∆t respectively. Upon rearrangement, we get

NA(tn+1) = NA(tn)
k2 NA(tn) ∆t+ 1 . (2.59)

Note that taking the limit of the right-hand side of this equation as ∆t → ∞
results in NA(tn+1) → 0. Given that we consider the members of the population
A as discrete agents, it is easy to realize that the predicted end behavior is true
if and only if the initial number of molecules of A, NA,i, is an even number.
In that case, all pairs of molecules of A will react with each other and none

13As opposed to the species-independent rate r = − 1
2

dNA
dt

= dNX
dt

.
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will eventually be left. On the other hand, if NA,i is odd then we predict
NA(tn+1) → 1 after a sufficient amount of time has elapsed. This is the first
example we have encountered where a differential equation fails to capture basic
facts about the stoichiometry of a process, given the discrete nature of agents
and the transition events between them.

As we did previously (equation (2.16)), we define the probability of no reac-
tion occurring within ∆t for a given molecule/agent of A as

P2A↛X ≡ NA(tn+1)
NA(tn) = 1

k2 NA(tn) ∆t+ 1 , (2.60)

and therefore,
P2A→X = 1 − 1

k2 NA(tn) ∆t+ 1 . (2.61)

This is the per-agent probability of a reaction happening in ∆t. It explicitly
depends on the population size of species A at the beginning of ∆t (time tn)
and has a range of [0, 1). We will refer to this expression from now on as Pcan
to reflect the fact that it was derived from the canonical form of the rate law.
Notice that P2A→X satisfies the Markov property in that it only depends on the
last known population size of A, NA(tn).

We will next show that Pcan is in fact an approximation most suitable for
simulating the time evolution of large populations of A.

Transition probability from the agent-based rate law

The rate law presented above (equation 2.57) is not entirely correct if one con-
siders that two distinct molecules of A participate in the reaction. That is, if a
particular member of the population of A does indeed react, then the size of of
the molecular population from which to choose a partner is NA−1. This is akin
to considering the number of distinct pairs of agents of A in the entire popu-
lation. The number of distinct pairwise interactions would normally include a
statistical factor of 1/2, given that all members of the population are identical in
a homogeneous population. Thus, the number of possible pairs is 1

2NA(NA−1).
However, since the algorithm evaluates the transition probability (and tests it
against a random number from the uniform distribution) for each agent of A,
the i−jth agent interaction is considered separately from the j− ith. Therefore,
the number of distinct pairs is NA(NA − 1) from the perspective of ABK, and
the rate’s dependence on the population size is more properly written as

rA = −dNA
dt

= k2 NA (NA − 1) . (2.62)

We refer to this as the agent-based form of the differential rate law, in recognition
of the fact that it treats the population as a discrete quantity (i.e., the members
of the population are distinguishable entities). This interpretation is supported
by the fact that manipulation of the CME for this process results in an analogous
form of the differential rate law of the average population size, <NA(t)> (see
derivation in Appendix A.3 leading to equation A.75).
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We hereby summarize the steps required to get the agent-based integrated
rate law. We begin by separating the variables,

− dNA
NA (NA − 1) = k2 dt ,

and expanding the left-hand side of the equation by using partial fraction de-
composition,

dNA
NA

− dNA
NA − 1 = k2 dt .

Upon integration of both sides over the time interval ∆t = tn+1 − tn, we get

ln
(

1 − 1
NA(tn+1)

)
− ln

(
1 − 1

NA(tn)

)
= −k2∆t

1 − 1
NA(tn+1) =

(
1 − 1

NA(tn)

)
e−k2∆t.

Finally, upon further rearrangement we get the agent-based integrated rate law

NA(tn+1) = NA(tn)
NA(tn) (1 − e−k2∆t) + e−k2∆t . (2.63)

Note that in the limit of ∆t → ∞, the population size NA(tn+1) → 1. Starting
from the microscopic form of the agent-based differential rate law (equation 2.62)
we have obtained an expression that predicts one molecule of A will remain
as the pool of A molecules is depleted. This is a by-product of solving the
differential equation analytically and makes intuitive sense only in the case of
NA,i being an odd number.

We have thus derived two forms of the integrated rate law (canonical and
agent-based, equations 2.59 and 2.63 respectively) that predict end behavior
that does not take into account if the initial population size is even or odd.
However, it is evident that the larger the population of A is, the more insignif-
icant this difference in end behavior between the two forms is. The relation-
ship between these forms can be easily seen by using the linear approximation
1 − e−k2∆t ≈ k2∆t (valid when ∆t → 0), which we substitute into both expo-
nential terms in the denominator of expression 2.63 and rearrange to get

NA(tn+1) = NA(tn)
k2 [NA(tn) − 1] ∆t+ 1 . (2.64)

This is identical to equation 2.59 for large populations of A where NA(tn)−1 ≈
NA(tn). Note how the two forms of the integrated rate law are essentially the
same for small ∆t, while they deviate in terms of their end behavior. In any
case, the ABK algorithm considers iterations of time intervals ∆t that are as
small as possible (with consideration given to the computational cost of choosing
too small of a ∆t value), therefore the choice of which integrated rate law to
use in defining the transition probability is not particularly important for larger
populations of A.
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We now use equation 2.63 to define the probability of no reaction occurring
in ∆t as

P2A↛X ≡ NA(tn+1)
NA(tn) =

[
NA(tn)

(
1 − e−k2∆t)+ e−k2∆t]−1

, (2.65)

and the per-agent transition probability is then

P2A→X = Pint = 1 −
[
NA(tn)

(
1 − e−k2∆t)+ e−k2∆t]−1

. (2.66)

We will refer to this probability as Pint to reflect the fact that it was derived
from the integrated rate law of the agent-based form of the differential equation
describing the process. Pint is only defined in the interval [0, 1) for NA(tn) ≥ 1.
It is important to notice that the transition probability for 1st order processes
did not depend on the population size, while 2nd order processes require consid-
eration of the population size, NA(tn), at each iteration of the ABK algorithm
(as equation 2.66 indicates).

We invite the reader to confirm that the Taylor expansion of the expression
for Pint around ∆t = 0 is

Pint = k2 [NA(tn) − 1] ∆t+ o(∆t) . (2.67)

The usefulness of this result will become apparent in the discussion that follows
on the derivation of the transition probability from the discretized differential
rate law (Pdif ).

Pdif from the differential rate law

We start with the agent-based 2nd order differential rate law rA = −dNA

dt =
k2NA (NA − 1) and discretize of the differential quantities dNA and dt. That is,
we assume that ∆t is small but finite such that ∆NA is also finite. We rewrite
the discretized rate law as

−∆NA
∆t ≈ k2NA (NA − 1) , (2.68)

where ∆t = tn+1 − tn. We remind the reader that the population size NA is
time-dependent: NA(tn). We then multiply both sides by ∆t/NA(tn) and use the
same definition of Pdif as in equation 2.25,

P2A→X ≡ Pdif = − ∆NA
NA(tn) , (2.69)

to obtain an expression for Pdif

Pdif = k2 [NA(tn) − 1] ∆t . (2.70)

Notice that just like in the case of 1st order processes, the expression for Pdif is
the linear approximation to Pint (equation 2.67) as ∆t → 0 and does not have
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an upper bound. Thus, one must choose ∆t with caution such that Pdif < 1
for all possible values of NA(tn). Equation 2.70 suggests the upper limit for the
value of ∆t in each iteration of the ABK algorithm should be

∆tmax = 1
k2 [NA(tn) − 1] . (2.71)

Transition probability of a Bernoulli process

We treat a 2nd order process in a similar way to that presented in subsection 2.2.3
for 1st order processes. We are interested in determining the probability that
the transition 2A → X occurs within a time interval ∆t = tn+1 − tn, which
we divide into s subintervals of equal length. Let rA be the observed average
number of reaction events within a population of molecules of A per unit of
time (microscopic rate),14 π̂ be the population-wide probability of a reaction
occurring in an ensemble of NA molecules within a sufficiently small interval
∆t/s such that 0 ≤ π̂ < 1, and p be the probability that each molecule of A has
of reacting in ∆t/s.

We assume that a transition event is independent of other such events in the
vicinity of a given molecule of A. Moreover, we ignore details inherent to the
microscopic nature of 2nd order chemical processes, such as the proximity of two
molecules of A, the energy and geometry of effective collisions, and the diffusion
coefficients of the molecular species. Accordingly, we stress that treating this
process as a Bernoulli trial will yield an approximation of the transition proba-
bility (while the same approach produced an exact result for 1st order systems,
where transition events are truly independent of one another). We aim to show
that this treatment will be phenomenologically useful in simulating 2nd order
processes despite the fact it is an approximation of how real systems, chemical
or otherwise, may behave.

Given these assumptions, we interpret this process as a sequence of Bernoulli
trials, with the expected value for the population-wide number of transition
events being sπ̂, and the following condition being true

rA∆t = sπ̂ . (2.72)

The population-wide probability π̂ must be the sum of the per-agent probabili-
ties p as long as each agent’s transition occurs independently of the others. In
other words,

π̂ =
NA∑
j=1

pj = pNA . (2.73)

We then substitute the above expression and equation 2.62 for rA into equa-
tion 2.72 to obtain

k2NA (NA − 1) ∆t = spNA , (2.74)
14We assume that ∆t is small enough so that rA can be approximated as constant during

this time interval.
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and therefore the per-agent probability is

p = k2 (NA − 1) ∆t
s

. (2.75)

As previously, NA stands for the population size at the beginning of time interval
∆t (alternatively denoted as NA(tn)).

We then proceed as for 1st order processes (subsection 2.2.3) to arrive at

P2A→X = lim
s→∞

[
1 −

(
1 − k2 (NA − 1) ∆t

s

)s]
P2A→X = 1 − e−k2(NA−1)∆t. (2.76)

This is recognizable as the mathematical form of the transition probability of a
1st order process, except the exponent has an additional term reflecting the fact
that the probability depends on the population size of A at the beginning of ∆t.
We will heretofore refer to the result of equation 2.76 as Pber, as an indication
that it was derived from the Bernoulli trial interpretation of this process.

Given the above result for Pber, the reader can verify that following the same
arguments as the ones presented in subsection 2.2.5, the number of transition
events, µ, is Poisson-distributed as ∆t → 0,

P̂µ =
(
k2NA(NA − 1)∆t

)
µ

µ! e−k2NA(NA−1)∆t + o(∆t) . (2.77)

(Compare the above expression with equation 2.47.) The average number of
transition events is <µ>= k2NA(NA − 1)∆t = rA∆t, where rA is the micro-
scopic rate of a homologous 2nd order process.

Comparison of transition probability expressions

We summarize the expressions for the probability of the transition 2A → X
that we have derived in Table 2.2. Figure 2.7 shows a comparison of the dif-

P2A→X Derived from:

Pcan = 1 − 1
NA(tn) k2∆t+1

Integration of canonical microscopic
rate law: −dNA

dt = k2N
2
A.

Pint = 1 − 1
NA(tn)(1−e−k2∆t)+e−k2∆t

Integration of agent-based microscopic
rate law: −dNA

dt = k2NA (NA − 1).

Pber = 1 − e−k2[NA(tn)−1]∆t Reaction events treated as Bernoulli trials.
Molecular details are ignored.

Pdif = k2 [NA(tn) − 1] ∆t Discretized agent-based microscopic
rate law: − ∆NA

∆t = k2NA (NA − 1).

Table 2.2 – Transition probability expressions for a 2nd order homologous process 2A → X.
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ferent expressions for the transition probability as a function of the time step
interval in the range 0 ≤ ∆t ≤ 0.10 sec. We graphed the results for two sepa-
rate 2nd order rate constants differing by an order of magnitude (k2 = 1.0 and
0.10 sec−1), and for two snapshots of the population size at an arbitrary time
step of the simulation, NA(tn) = 10 and 50 agents respectively. As expected,
the probability curves converge as ∆t → 0. However, for fast reactions15 (first
row of plots in Figure 2.7) occurring in larger populations, the linear approx-
imation Pdif grows too rapidly and the different forms of the P2A→X curves
significantly deviate from each other at low ∆t values. We conclude that for
fast reactions Pint should be used for evaluating transition probabilities at each
time step of the ABK algorithm. For slower reactions (e.g., k2 = 0.10 sec−1,
second row of plots in Figure 2.7) and low copy number populations, the curves
become virtually indistinguishable (for instance, at ∆t = 1/100 sec) and Pdif is
the preferred approach because of its simplicity and savings in computational
time that it affords.

The plots in 2.7 suggest that the choice of which of the four different expres-
sions for the transition probability of 2A → X to use depends on the population
size, NA(tn), and ∆t. When the population size is small and ∆t is chosen to be
small, Pdif and Pber are excellent approximations to Pint. In fact, the smaller
that rate constant k2 is the greater the range of ∆t values and populations for
which the use of Pdif and Pber is warranted. These observations are illustrated
in qualitative form in Figure 2.8 and provide a guideline for the proper choice
of a transition probability expression.

15Note that the microscopic rate constant k2 = 1.0 sec−1 represents a very fast 2nd order
process. For a volume of 1µm3 = 10−15 L (approximate volume of an E. coli cell), we can
obtain using equation 2.10 the macroscopic rate constant: k′

2 ≈ 6 × 108 sec−1M−1. This
is indeed a very fast process with a rate constant that is within the range of measured cat-
alytic rates for diffusion-limited enzymes (BioNumbers ID 103809: http://bionumbers.hms.
harvard.edu//bionumber.aspx?id=103809&ver=3; Milo et al., 2010).
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Figure 2.7 – Comparison of transition probabilities for a 2nd order process. The four derived
expressions for the transition probability of 2A → X are plotted as a function of the time
interval ∆t for two population sizes, NA(tn) = 10 and 50 agents of A. The vertical dashed
gray line is drawn to highlight the difference between the curves at ∆t = 0.01 sec. The first
row of plots show the results for k2 = 1.0 sec−1 (a very fast process), while the second row
for k2 = 0.10 sec−1. The legends apply to all four plots. Notice the difference in the scaling
of the vertical axis in each row of the above tableau of plots.
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Figure 2.8 – Choice of transition probability expression. A qualitative summary of the proper
choice for the transition probability expression in different regimes of population size, NA(tn),
and time step increment, ∆t, used in the ABK algorithm. Given that Pint is the result of the
agent-based treatment for a 2nd order process, it can be used throughout the diagram. Pcan

is best-suited for large populations, but Pdif and Pber are good approximations to Pint for
small population sizes and time step increments, and are preferred because of their simpler
algebraic nature and resulting gains in computing speed. The red arrows indicate that the
region where Pdif and Pber can be used without significant loss of accuracy “expands” the
slower the process is (i.e., as k2 decreases).

ABK algorithm implementation

We hereby implement the ABK algorithm as described in subsection 2.2.6, ex-
cept we modify step 3 to account for the fact that we are dealing with a 2nd

order process. Essentially, the algorithm assesses if a given agent of A partici-
pates in a transition event and then randomly chooses an interacting partner (a
second agent of A), justified by the fact that a selection of a reacting partner
is required to reflect the stoichiometry of the process. We store the state of
each member of the populations A and X in an array with a binary (0/1) value
system. The algorithm then is:

1. Evaluate the transition probability P2A→X for each agent of A present
at time tn using the appropriate probability expression (as shown in Fig-
ure 2.8 and the preceding discussion).

2. Draw a random number ru from the standard uniform distribution in the
interval (0, 1).

3. Check the condition that ru < P2A→X for each agent of A. If the condition
is true, then the state of that particular agent of A is changed to 0, a second
agent of A is randomly chosen from the population and its state is changed
to 0, while an agent of species X is created and its state is set to 1. If
the condition is false then the agent states and population sizes do not
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change.
Important note: One must be careful to take the second randomly chosen
A agent out of the pool of available agents within a given time step. This
ensures that an agent is not counted multiple times as part of transition
events in the same time interval.

4. Sum up the number of A and X molecules in their respective populations
after all probability conditions have been checked. This is the updated
population size at the time point corresponding to the end of time interval
∆t, or tn+1.

5. Update the absolute time tn+1 = tn + ∆t.

We include a sample Matlab script to illustrate our programmatic implementa-
tion of the algorithm in Appendix D (p. 276).

Follow this link to
see all of the code
used for the
simulations in this
section.

We simulated the time course of a 2nd order process for homogeneous pop-
ulations of different initial size, NA,i, using the ABK algorithm. The results
of simulations for populations consisting of thousands or hundreds of A agents
agree exceedingly well with the time course predicted by the solutions to both
the canonical and agent-based differential equations used to describe this process
(equations 2.57 and 2.62). This is consistent with earlier arguments made in this
section that for large populations the distinction between the two forms is not
practically important. However, recall that the end-behavior of the solutions to
the differential equations is different: in the canonical form (equation 2.59) the
population size of A approaches 0, while in the agent-based form (equation 2.63)
it approaches 1 regardless of the initial population size. We show in Figure 2.9
that our simulations using the Pint form16 of evaluating transition probabili-
ties are consistent with this distinction becoming more pronounced for smaller
population sizes. While for NA,i = 50 the population size (averaged over 500
repetitions of the ABK algorithm; blue curve) closely follows the trajectory of
the canonical form (red dotted line, R2 = 0.9995), for even smaller populations
with an odd initial number of agents the population size deviates from the pre-
diction of the canonical form and approaches that of the agent-based form as t
increases (Figure 2.9b). As noted previously, this is to be expected since each
transition event consumes two agents of A, and therefore the final population
will consist of a single individual if the initial number was odd. The effect is most
pronounced for NA,i = 10 (R2 = 0.8939 for agreement with agent-based form;
R2 = 0.9956 for canonical form) where the difference between the agent-based
deterministic and ABK time trajectories is clearly visible (Figure 2.9c).

It is more meaningful to compare <NA(t)> obtained through ABK simula-
tions with an average trajectory computed from the probabilistic formulation of
chemical kinetics. Obtaining a solution for the CME describing a homologous
2nd order process is cumbersome due to the nonlinearity that the stoichiometry
of the process imposes. Moreover, there is no closed-form solution for the mo-
ments of the time-dependent distribution of the molecular population size (see

16Similar results were obtained when using Pcan, Pber and Pdif to determine transition
probabilities (data omitted in the interest of brevity).
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section A.3). Given these difficulties in computing a solution to the CME, we
instead use Gillespie’s algorithm (SSA; Appendix B) to obtain measures of the
mean and standard deviation of the NA(t) trajectory.17 We remind the reader
that the SSA provides a way to accurately sample the probability distribution
that is predicted by the CME, therefore the two approaches can be considered
to be equivalent. We show in Figure 2.9c that the ABK and SSA mean trajecto-
ries are virtually indistinguishable from each other (R2 = 0.9993). Figure 2.9d
shows a comparison of the relative standard deviation as observed through our
simulations and the SSA. Once again, the agreement is excellent.

Finally, we plot the distribution of transition of events for two different
initial population sizes NA,i = 50, 10 (Figure 2.10) and compare them to the
deterministic distribution calculated numerically using the solution to the agent-
based microscopic rate law18 (equation 2.62). We numerically computed the
deterministic distribution as follows: 1) the number of histogram bins defines a
succession of time intervals; 2) the normalized difference between the population
sizes of a species at the endpoints of each time interval provide the fraction
of transition events within the specified time interval; 3) evaluation of these
fractional values for all successive and non-overlapping time intervals yields the
discretely-sampled PDF.

Comparison of the ABK data to the distribution obtained from the agent-
based rate law is nearly perfect (R2 = 0.9999) even for small population sizes
of NA,i = 50. In the case of low copy number populations, NA,i = 10 is an
example where the respective average time trajectories of the two approaches
deviate from each other (see Figure 2.9c). Figure 2.10b shows that ABK pre-
dicts a greater fraction of transition events occurring in the first 10 sec of sim-
ulated time, while there is close agreement beyond this time point (overall
R2 = 0.9963). However, as we have discussed, it is more appropriate to compare
the ABK method to the stochastic formulation of chemical kinetics. We have
therefore computed the distribution of transition events obtained from the SSA
average trajectory in the same way as described in the preceding paragraph. The
agreement between the ABK and SSA distributions is excellent (R2 = 0.9989
for NA,i = 10).

17We wrote our own custom scripts to implement Gillespie’s algorithm. We also used the
software StochSS to perform these simulations (Drawert et al., 2016). The two implementa-
tions gave virtually identical aggregate results.

18We have also checked our results against the PDF computed from the canonical form of
the rate law and obtained a similarly good fit.
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Figure 2.9 – Time course of 2A → X process for populations of different initial size.
a-c) For each of the initial populations of A, NA,i = 50, 25, 10 agents, we simulated the
time evolution for the process 2A → X using the ABK algorithm. We used the following
parameters and methods: fixed time step increments ∆t = 0.01 sec, microscopic rate con-
stant k2 = 0.01 sec−1, and Pint for calculating transition probabilities (equation 2.66). We
hereby plot the time dependence of the average population size of A (n = 500; blue curve)
and its one-standard-deviation envelope (gray dashed curves). We also show the solutions
to the agent-based and canonical differential equations (denoted by DEab and DEcan in the
legend of plot a; green and red dotted curves, respectively) used to describe this process
(equations 2.62 and 2.57). The inset plots in panels a,b focus on the end behavior of the
simulation results compared to the solutions of the differential equations, and have the same
aspect ratio between the t and NA(t) axes as their parent plots. Panel c (NA,i = 10) also
shows the average time trajectory obtained through Gillespie’s algorithm (SSA; n = 1000).
The agreement between the ABK and SSA mean trajectories is excellent (R2 = 0.9993).
Similar fits were obtained for NA,i = 50, 25 (not shown). Note that the plots differ in
the scaling of the axes. d) A comparison between the relative standard deviation values
obtained through repetitions of the ABK simulation (n = 5000) and the SSA (n = 5000)
for different initial population sizes, NA,i = 25, 10, for the first 40 sec of simulated time
(R2 = 0.9995, 0.9979, respectively; R2 = 0.9923 for the NA,i = 50 curve, which is not
shown).
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Figure 2.10 – Distribution of 2A → X transition events. a) Distribution of transition
events (shown as a histogram with 20 bins) for an ABK simulation (repeated 2000 times)
with the indicated initial population size (NA,i = 50) and the Pber method of evaluating
transition probabilities. The number of transitions in each time interval is normalized to
NA,i. We have superimposed the numerically-obtained distribution at selected time points
(green circles) based on the agent-based microscopic rate law of this 2nd order process
(equation 2.62; labeled “DE” in the legend) and the fraction of transitions obtained from an
ensemble of SSA simulations (n = 5000; hollow blue squares). The agreement between these
discretely-sampled PDFs with the ABK-obtained distribution is excellent (R2

DE = 0.9999,
R2

SSA = 0.9999). b) Same as in panel a, except for the initial population size: NA,i = 10
(R2

DE = 0.9963; R2
SSA = 0.9989). Note that the scale of the (horizontal) time axis is

different in the two plots.
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2.3.2 A + B → X

Armed with the results of the analyses from the preceding sections on 1st and
2nd order homologous processes, we proceed more swiftly in our description
of modeling heterologous processes using the ABK framework (although some
modifications to the algorithm will be necessary to accommodate this scenario).
We consider a system that consists of two species, A and B, capable of inter-
acting with each other to produce X.

Transition probability from the integrated rate law

The microscopic rate law for this process with respect to A or B, r, is19

r = −dNA
dt

= −dNB
dt

= k2NANB . (2.78)

This is the canonical form of a 2nd order reaction rate law as presented in the
study of chemical kinetics. The number of distinct pairs of interacting agents is
NANB , and consideration of the discrete nature of molecules/agents does not
yield a distinct form of the rate law. Thus, there is only one expression for
the differential rate law describing this process. We proceed to integrate this
differential equation over the time interval ∆t = tn+1 − tn, obtaining

NB(tn+1)/NB(tn)
NA(tn+1)/NA(tn)

= ek2[NB(tn)−NA(tn)]∆t. (2.79)

Proceeding as before, we define the probability of no reaction happening in ∆t
as

PA+B↛X ≡ NA(tn+1)
NA(tn) = NB(tn+1)

NB(tn) , (2.80)

depending on which of the two reactant species we wish to evaluate an agent’s
transition probability of. The probability that a given agent of A or B, respec-
tively, will react within ∆t is

PA+B→X = 1 − NB(tn+1)
NB(tn) ek2[NA(tn)−NB(tn)]∆t (2.81)

PA+B→X = 1 − NA(tn+1)
NA(tn) ek2[NB(tn)−NA(tn)]∆t , (2.82)

where the bold designation of either A or B on the subscript of the left-hand
side of the above equations indicates the reactant species that the expression
applies to.

These transition probabilities are different from the ones we have previously
encountered in that evaluation of the right side of equations 2.81 and 2.82 re-
quires knowledge of either species population size at tn+1. This makes use of

19The stoichiometric coefficients for this process being 1 ensures that this is the same as the
species-independent rate r = − dNA

dt
= − dNB

dt
= dNx

dt
.
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the ABK algorithm impossible since its purpose is to determine the population
sizes at tn+1.20 We therefore abandon this approach and continue by using
other methods to obtain suitable transition probability expressions.

Pdif from the differential rate law

We discretize the rate law (equation 2.78) to obtain

−∆NA
∆t = −∆NB

∆t ≈ k2NANB . (2.83)

We then define the transition probabilities

PA+B→X ≡ − ∆NA
NA(tn) = Pdif,A , (2.84)

and
PA+B→X ≡ − ∆NB

NB(tn) = Pdif,B . (2.85)

This gives us the familiar form of Pdif evaluated with respect to a molecule/a-
gent of A or B, respectively,

Pdif,A = k2 NB(tn) ∆t (2.86)
Pdif,B = k2 NA(tn) ∆t . (2.87)

Transition probability of a Bernoulli process

We choose to monitor the progress of the reaction by sampling the transition
probability of the members of only one of the two species involved (A or B).
From this perspective, if a molecule of A reacts then we randomly select a
molecule of B from its population to satisfy the “rule” of the stated reaction

20We attempted a modification of the algorithm to obtain an approximation for the time
trajectory of the populations using the results of equations 2.81 and 2.82. In brief, given the
initial population sizes at t0, we calculated the corresponding population sizes at t1 (first iter-
ation of the ABK algorithm) using the discretized differential form of transition probabilities
(Pdif , described next in this section). Knowledge of the populations sizes at t0 and t1 served
as a seed for using the probability expressions derived from the integrated rate law. Generally,
we considered the time interval ∆t+ τ = tn+1 − tn + τ , where the population sizes are known
at times tn and tn+1. We then calculated the transition probabilities using the aforemen-
tioned equations for the time interval ∆t, and reasoned that as τ → 0 it is an acceptable
approximation to apply the calculated probabilities over the subsequent time interval τ to
determine the result of the algorithm’s next iteration. The resulting time trajectories showed
excellent agreement with the theoretically predicted curves (obtained by the analytic solution
of the differential equation 2.78) for initial population sizes NA,i or NB,i > 50. However,
as we tried progressively smaller initial population sizes, the time trajectories (averaged over
many repetitions of the algorithm) showed increased deviation from theory even when we
considered smaller values of τ (such as τ = 1/5000 sec; using even smaller values of τ surpassed
the memory capacity of the computers we had available for running these simulations; results
not shown). For this reason, and because there is no compelling theoretical basis for using
this approximation in the first place, we abandon the use of the integrated rate law to model
the time evolution of heterologous 2nd order processes.
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(A + B → X). Alternatively, we can do the same from the perspective of the
members of population B: we calculate the probability that each molecule of
B has of reacting, and then randomly choose a molecule of A as its reacting
partner if a reaction occurs within ∆t.

We follow the same logic as in the previous section on homologous 2nd order
processes, and consider the population-wide probability π̂A of a reaction occur-
ring to a member of the population of A within a time interval of length ∆t/s,
and the per-agent probability pA in the same interval. Therefore, we have

r∆t = sπ̂A . (2.88)

Given the expression for r (equation 2.78), and assuming that a reaction event
for an A molecule is independent of other such reactions in the population, then
π̂A = NApA, and equation 2.88 becomes

k2NANB∆t = spANA

pA = k2NB∆t
s

. (2.89)

As before, taking the limit as s → ∞, we arrive at the expression for the
probability that a molecule of A reacts within time interval ∆t = tn+1 − tn,

PA+B→X = 1 − e−k2NB∆t. (2.90)

Similarly, we derive the corresponding expression for when an agent of B is
sampled,

PA+B→X = 1 − e−k2NA∆t, (2.91)

where NA and NB refer to the population sizes at time tn (elsewhere denoted as
NA(tn) and NB(tn), respectively). We will refer to these expressions as Pber,A
and Pber,B to indicate the Bernoulli interpretation of reaction events and the
species they specifically apply to. As in the case of a homologous 2nd order
process, we stress that the probability expressions we have derived here are an
approximation valid for small ∆t.

Using the above result for Pber,B (or Pber,A), the reader can verify that the
same arguments presented in subsection 2.2.5 result in the number of transition
events, µ, being Poisson-distributed as ∆t → 0,

P̂µ = (k2NANB∆t) µ

µ! e−k2NANB∆t + o(∆t) . (2.92)

The average number of transition events is therefore <µ>= k2NANB∆t = r∆t,
where r is the microscopic rate of a heterologous 2nd order process (equa-
tion 2.78).

Summary of transition probability expressions

We summarize the expressions we have derived for the probability of the tran-
sition A+B → X in Table 2.3. All of our previous comments on the differences
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PA+B→X Derived from:

Pber,A = 1 − e−k2 NB(tn) ∆t Reaction events treated as Bernoulli trials.
Pber,B = 1 − e−k2 NA(tn) ∆t Molecular details are ignored.
Pdif,A = k2 NB(tn) ∆t Discretized agent-based microscopic rate law:
Pdif,B = k2 NA(tn) ∆t − ∆NA

∆t = − ∆NB

∆t = k2NANB .

Table 2.3 – Transition probability expressions for a 2nd order heterologous process A+B →
X.

between Pber and Pdif still apply. Most notably, Pdif increases without bound
so care must be taken to ensure that it does not exceed 1. On any given time
step of the simulation, the following condition must be satisfied,

∆tmax = 1
k2 N(tn) , (2.93)

where N(tn) represents either the population size of A or B at time tn, depend-
ing on which Pdif expression is used.

ABK algorithm implementation

We will implement the ABK algorithm as described for homologous 2nd order
processes, except that it is modified to account for the fact that we are dealing
with a heterologous process. The algorithm can be run with respect to either
population A or B; that is, the probability of each member of the chosen popu-
lation participating in a transition event with a member of the other species is
evaluated. Our results indicate that identical results are obtained when using
the algorithm for either choice of population, although our preference is to use
the smaller, or limiting, species population because it reduces computational
runtime.

We present an outline of the algorithm when choosing population B to mon-
itor the time evolution of the system (with the understanding that the alternate
choice requires the swapping of A and B in steps 1, 3):

1. Evaluate the transition probability PA+B→X for each B agent present at
time tn using the appropriate probability expression (Table 2.3).

2. Draw a random number ru from the standard uniform distribution in the
interval (0, 1).

3. Check the condition that ru < PA+B→X for each B agent. If the condition
is true, then the state of that particular B agent is changed to 0, an A
agent is randomly chosen from the population and its state is also changed
to 0, while an X agent is created and its state is set to 1. If the condition
is false then the populations do not change.
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4. Sum up the number of A, B and X molecules in their respective pop-
ulations after all probability conditions have been checked. This is the
updated population size at the time point corresponding to the end of
time interval ∆t, or tn+1.

5. Update the absolute time tn+1 = tn + ∆t.

We include a sample Matlab script to illustrate our programmatic implementa-
tion of the algorithm in Appendix D (p. 278).

Follow this link to
see all of the code
used for the
simulations in this
section.

We tested the algorithm for populations of different sizes, choice of tran-
sition probability expression (Pber or Pdif ), and choice of species population
with respect to which transition probabilities are evaluated (i.e., A or B). For
simulations with k2 = 0.01 sec−1 and fixed time steps of ∆t = 0.01 sec, our re-
sults indicate that for larger populations (NA,i and NB,i > 100) the agreement
with the solution to the differential equation describing this system is virtually
perfect (data not shown) using either Pber or Pdif expressions, and regardless
of which species we chose to run the algorithm with respect to. Figure 2.11a,b
shows the results for two examples of smaller populations where NB,i = 0.7NA,i
(i.e., species B is limiting). Notice that in the plot for NA,i = 10 and NB,i = 7,
there is a small but noticeable deviation from the solution to the differential
equation (approximately 1 − 2% difference in the neighborhood of t = 30 sec).

The solution to the CME for a 2nd order heterologous process can be obtained
analytically (Lecca et al., 2013b; see Appendix A.4, equation A.81), and is a
time-dependent probability distribution of the population size that has no direct
analogue to the ones typically encountered in science. We have calculated the
first moment (mean) of the distribution and found that it also deviates from
the deterministic prediction.21 In fact, the average trajectories from the ABK
simulations agree nearly perfectly (R2 = 0.9997) with those predicted from
the solution to the CME (Figure 2.11b).22 We observed a similar deviation
in the regime of small population sizes for homologous 2nd order processes,
and attribute it to the discrete nature of the population’s makeup becoming
more pronounced during the act of averaging over low copy number population
sizes. We also calculated the central second moment (variance) and standard
deviation of the distribution predicted by the CME and compared it to the
standard deviation of the average time courses obtained through our simulations
(Figure 2.11c,d). The agreement is once again excellent (R2 > 0.996).

We also show the time-dependent distribution of transition events (normal-
ized to NB,i; shown as red bars in Figure 2.12) and compare it to the determin-
istic distribution for a 2nd order heterologous process (green circles). We also
show the corresponding distribution obtained from the CME-predicted average

21The small difference between the deterministic time trajectories and those obtained from
the CME solution has been reported before (Ishida, 1964). The explanation for this dis-
crepancy is the presence of a covariance of NA and NB term in the differential equation for
d<NB>/dt (Lecca et al., 2013b, equation 2.114). Thankfully, this term is typically negligible.

22A far less significant in magnitude difference in the average time trajectories was observed
in the case of NA,i = 50, NB,i = 35, NX,i = 0. Accordingly, we do not show the CME average
trajectory in Figure 2.11a.
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Figure 2.11 – Time course of A + B → X process for populations of different initial size.
We simulated the time evolution of the heterologous 2nd order process A+B → X using the
ABK algorithm for two sets of initial number of A and B agents/molecules. In both cases,
∆t = 0.01 sec (fixed time step increment), k2 = 0.01 sec−1. a) NA,i = 50, NB,i = 35,
NX,i = 0. We performed simulations with respect to the members of population A using
the Pdif form of transition probabilities. Average population sizes (n = 500) are depicted
by solid curves: blue for species A and red for species B. The standard deviations were
also calculated at each time step (dashed gray curves denote the one-standard-deviation
envelope). The dotted curves correspond to the solution of the microscopic differential
equation (DE) describing this process. The simulation agrees with the DE time trajectories
(R2 = 0.9998). The time evolution of species X is not shown for clarity. b) NA,i = 10,
NB,i = 7, NX,i = 0. In this case we performed simulations with respect to the members of
population B using the Pber form of transition probabilities. We also show the average time
trajectory <NB(t)> obtained through the solution to the CME (green filled circles). The
CME trajectory is slightly different than the one predicted by the DE, and the average ABK
trajectory (n = 500) more closely matches the CME’s (R2 = 0.9997). c) Comparison of
the standard deviation obtained through repetitions of our simulations (n = 5000) and that
predicted by the solution to the CME (R2 = 0.9970) for the indicated initial population sizes.
d) Same as in panel c, but with different initial population sizes (n = 5000; R2 = 0.9964).
Note that the horizontal time-axes are scaled differently in each column of panels.
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population trajectories. We numerically computed the respective distributions
in the same way as described in the preceding subsection (on homologous 2nd

order processes). We repeat it here for the reader’s convenience: 1) the num-
ber of histogram bins defines a succession of time intervals; 2) the normalized
difference between the population levels of a species at the endpoints of each
time interval provide the expected fraction of transition events within the spec-
ified time interval; 3) evaluation of these fractional values for all successive and
non-overlapping time intervals yields the discretely-sampled PDF. The agree-
ment between the results of the ABK simulation and the theoretically-predicted
distributions is excellent (R2 > 0.996).
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Figure 2.12 – Distribution of A + B → X transition events. We repeated the ABK sim-
ulation 2000 times (same parameters as in Figure 2.11) to obtain the histogram (20 bins)
of the number of transitions in each time interval (normalized to NB,i). a) Distribution of
transition events for a simulation with the initial condition NA,i = 50, NB,i = 35, NX,i = 0.
We have superimposed the numerically-obtained distribution for the 2nd order deterministic
process (labeled “DE” in the legend; green circles). We also show the distribution obtained
from the CME (hollow blue squares). A comparison of these distributions with the one
obtained through ABK simulations is excellent (R2

DE = 0.9999, R2
CME = 0.9999). b)

Distribution of transition events for the set of initial population sizes NA,i = 10, NB,i = 7,
NX,i = 0. The agreement of the ABK and the theoretical distributions is once again ex-
cellent (R2

DE = 0.9966, R2
CME = 0.9978). Note that the horizontal time-axes are scaled

differently in the two plots.
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2.4 3rd Order Processes
Chemical reactions obeying 3rd order kinetics occur extremely rarely and it is
thought that there are no 3rd order elementary processes. However, we briefly
present the ABK implementation of such processes to demonstrate the generality
of the hitherto derived methods and how they can be extended to potential
higher order processes in non-chemical systems.

In keeping with the nomenclature we used when dealing with 2nd order
processes, we will concern ourselves with the homologous elementary process

3A → X , (2.94)

and the heterologous ones

2A+B → X

A+ 2B → X (2.95)
A+B + C → X ,

with microscopic rate constant k3 (units: sec−1). X does not necessarily describe
the formation of a single product or complex, but is meant to represent all
possible products that can result from a considered reaction.

2.4.1 3A → X

Transition probability from the canonical rate law

The microscopic rate law with respect to A, rA, for the homologous process
3A → X is23

rA = −dNA
dt

= k3N
3
A . (2.96)

Upon integration over the time interval ∆t = tn+1 − tn (where the variable n
represents the nth time step of the ABK algorithm) gives

NA(tn+1)
NA(tn) =

(
2k3 NA(tn)2∆t+ 1

)−1/2
. (2.97)

Note that upon integration over a sufficiently large enough time interval ∆t
(not for the purpose of using the ABK algorithm, but for investigating the
end-behavior of this solution) we find that NA → 0, as expected for large pop-
ulations. The initial number of A agents will obviously affect the final number
of untransformed/unreacted agents in a process where discrete members of a
population interact (for instance, only when NA,i is a multiple of 3 will the pop-
ulation of A be completely depleted). This is another example of how differential
calculus is not well-suited to describing low copy number populations.

23As opposed to the species-independent rate law, r = − 1
3

dNA
dt

= dNx
dt

.
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Given our standard definition of the probability that no reaction occurs in
∆t, we obtain

P3A→X ≡ 1 − NA(tn+1)
NA(tn) (2.98)

P3A→X = 1 −
(
2k3 NA(tn)2∆t+ 1

)−1/2
. (2.99)

We will refer to this transition probability as Pcan in reference to the fact that
it was derived from the canonical rate law for this process.

The agent-based interpretation of the rate law

The canonical rate law presented above applies best to large populations. Con-
sidering the population as consisting of discrete agents suggests that the rate
law should be restated as

rA = −dNA
dt

= k3NA (NA − 1) (NA − 2) , (2.100)

which can be integrated over time interval ∆t = tn+1 − tn to yield the following
expression,√

NA(tn+1) [NA(tn+1) − 2]
NA(tn+1) − 1 =

√
NA(tn) [NA(tn) − 2]

NA(tn) − 1 e−k3∆t. (2.101)

There is no way to rewrite this result through algebraic manipulation in the form
NA(tn+1)
NA(tn) = f (NA(tn), k3, ∆t), where f is a function of the indicated variables.

Therefore, we cannot use the integrated rate law to derive a suitable transition
probability expression. Notice, however, the end behavior of this expression: as
∆t → ∞, NA → 0 or NA → 2 (this can be easily seen by examining the numer-
ator of the left-hand side in equation 2.101). This observation again highlights
the limitation in using differential equations to describe small populations of
discrete agents, as the final number of remaining A agents depends on the size
of the initial population.

Other transition probability expressions and summary

We proceed through the same derivation of treating reaction events as Bernoulli
trials and derive the following familiar expression:

Pber = 1 − e−k3[NA(tn)−1][NA(tn)−2]∆t. (2.102)

Also, by discretizing the agent-based form of the rate law (equation 2.100), we
determine

Follow this link to
see the Matlab code.

Pdif = k3 [NA(tn) − 1] [NA(tn) − 2] ∆t . (2.103)
We summarize our findings for transition probability expressions that describe
homologous 3rd order processes in Table 2.4. We have implemented the ABK
algorithm as previously described and have obtained results similar to the ones
shown for homologous 2nd order processes (data not shown).
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P3A→X Derived from:

Pcan = 1 −
(
2k3 NA(tn)2∆t+ 1

)−1/2 Integration of canonical microscopic rate law:
−dNA

dt = k3N
3
A.

Pber = 1 − e−k3[NA(tn)−1][NA(tn)−2]∆t Reaction events treated as Bernoulli trials.

Pdif = k3 [NA(tn) − 1] [NA(tn) − 2] ∆t Discretized agent-based microscopic rate law:
− ∆NA

∆t = k3NA (NA − 1) (NA − 2).

Table 2.4 – Transition probability expressions for a 3rd order homologous process 3A → X.

2.4.2 2A + B → X

We now consider the heterologous 3rd order processes consisting of two inter-
acting species, A and B, at a stoichiometry of 2 : 1. We focus on this process
with the understanding that our results will apply to the case A+ 2B → X by
a simple exchange of A and B in the expressions for the transition probability.

The canonical rate law for this process is

rA = −dNA
dt

= k3N
2
ANB , (2.104)

which applies to large populations of A andB. We are again specifically referring
to the species-dependent rate law, rA. The corresponding rate law rB has the
same algebraic form, even though rA and rB are not equal to each other and are
related by a statistical factor based on the stoichiometry (in this case, rA = 2rB).

The agent-based interpretation of this process leads the following form of
the rate law:

rA = −dNA
dt

= k3NA (NA − 1)NB . (2.105)

As we saw in the preceding subsection, integrating the rate law of higher
order processes can yield complicated expressions that cannot always be rear-
ranged to fit the definition of the probability of no reaction P↛ ≡ NA(tn+1)/NA(tn).
We therefore focus on the Bernoulli trial interpretation of reaction events and
the discretized version of the differential rate law to derive expressions for the
transition probability (Pber and Pdif , respectively), which, although they are

Follow this link to
see the Matlab code.

approximations, are amenable to easy analysis and programmatic implementa-
tion.

As in the case of heterologous 2nd order processes, the implementation of
the ABK algorithm requires a choice to be made with respect to which species
population the per-agent transition probability is evaluated. We summarize the
probability expressions in Table 2.5.
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P2A+B→X Derived from:

Pber,A = 1 − e−k3[NA(tn)−1]NB(tn)∆t
Reaction events treated as Bernoulli trials.

Pber,B = 1 − e−k3NA(tn)[NA(tn)−1]∆t

Pdif,A = k3 [NA(tn) − 1]NB(tn) ∆t Discretized agent-based microscopic rate law:
Pdif,B = k3NA(tn) [NA(tn) − 1] ∆t − ∆NA

∆t = k2NA [NA(tn) − 1]NB .

Table 2.5 – Transition probability expressions for a 3rd order heterologous process 2A+B →
X.

2.4.3 A + B + C → X

Follow this link to
see the Matlab code.

The only other possible heterologous 3rd order process consists of three species
of agents interacting with stoichiometry 1 : 1 : 1. We merely show in Table 2.6
the transition probability expressions using the Bernoulli trial interpretation
and the discretized differential rate law. We do not show plots highlighting
the agreement between the ABK algorithm and the solution to the differential
equation describing this process in the interest of brevity. We note that we
obtained identical results regardless of which of the three reactant species we
chose to run the ABK algorithm with respect to.

PA+B+C→X Derived from:

Pber,A = 1 − e−k3NB(tn)NC(tn) ∆t

Reaction events treated as Bernoulli trials.Pber,B = 1 − e−k3NA(tn)NC(tn) ∆t

Pber,C = 1 − e−k3NA(tn)NB(tn) ∆t

Pdif,A = k3NB(tn)NC(tn) ∆t Discretized agent-based microscopic rate law:
Pdif,B = k3NA(tn)NC(tn) ∆t − ∆NA

∆t = k3NANBNC .
Pdif,C = k3NA(tn)NB(tn) ∆t

Table 2.6 – Transition probability expressions for a 3rd order heterologous process A+B +
C → X. We remind the reader of the equality − ∆NA

∆t
= − ∆NB

∆t
= − ∆NC

∆t
which follows

from the equivalence between the corresponding differential rates.
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2.5 0th Order Processes
We have not yet addressed 0th order processes because they are fundamentally
different from the others we have analyzed: they do not depend on the pres-
ence of any agents such that a reaction event occurs (alternatively stated, they
are not agent-based processes). This is obviously not true for real physical
processes where there is always a 1st or higher order dependence on the par-
ticipating species (reactants in the case of chemical reactions). However, real
processes may appear to kinetically behave as 0th order under saturating con-
ditions. Examples are a reaction that depends on the presence of an inorganic
catalyst whose surface is saturated with reactant molecules, and biological cat-
alysts obeying Michaelis-Menten kinetics operating near vmax. Transcription
and translation are particularly important examples of biological processes that
can proceed (and be modeled) through 0th order kinetics.

Here, we define a probability expression that allows us to stochastically
model such processes. We use the notation

∅ → X , (2.106)

where the symbol ∅ on the left-hand side represents the lack of dependence
of the reaction rate on any reactants.24 As such, it is equivalent to a “birth”
process where X is produced at a constant rate,

r = dNX
dt

= k0 , (2.107)

with k0 being the 0th order microscopic rate constant (units: sec−1).
It initially seems that since the rate does not depend on the population of

any species, the ABK algorithm cannot be used to assess the time evolution of
the process. That is, there is no probability condition to be checked for each
agent since no reactant species exists in the model to begin with. However, we
can still stochastically simulate this process by defining the probability that a
“birth” event will take place within time interval ∆t as

P∅→X ≡ k0∆t . (2.108)

As long as ∆t is chosen so that P∅→X < 1, the above expression accurately
predicts the growth of population X. This definition is motivated by the obser-
vation that k0 is the frequency of production of X (agents of X per unit of time)
and can be scaled by the time interval we monitor the reaction progress for, ∆t.
This also agrees with the integrated rate law for this process, NX(t) = NX,i+k0t,
for the time interval [0, t]. Rewriting this expression for the general time interval
∆t, we get ∆NX = k0∆t. As long as we choose a small enough ∆t such that, on

24At first glance, the process 2.106 implies that an agent/molecule of X is produced out
of nothing, thereby violating the Law of Conservation of Mass. What we mean here is that
the synthesis of X appears to follow 0th order kinetics and the population sizes of the species
involved in the reaction (the reactants) remain unchanged. We therefore omit them for sim-
plicity and use ∅ to denote them.
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average, ∆NX < 1, then the above definition of the probability of a 0th order
reaction is justified.

Equation 2.108 has the same algebraic form as the transition probability for
a 1st order reaction (equation 2.25). However, there is an important difference
in how the expression is used by the ABK algorithm for 0th order processes: the
value of P∅→X is checked against a random number (drawn from the uniform
distribution) just once in each time interval ∆t (whereas PA→X is checked for
each A agent undergoing a 1st order process). Therefore, either the population
size of X remains the same or it increases by one agent at the end of ∆t.

ABK algorithm implementation

Follow this link to
see the Matlab code.

We hereby state how the algorithm is modified to account for the kinetics of a
0th order process: the following steps are executed just once in each time step
of duration ∆t. As we have done in previous sections, we define ∆t = tn+1 − tn,
where n represents the nth time step of the ABK algorithm.

1. Evaluate the probability that a “birth” event occurs in ∆t, P∅→X (as
defined in equation 2.108).

2. Draw a random number ru from the standard uniform distribution in the
interval (0, 1).

3. Check the condition that ru < P∅→X . If the condition is true, then a single
agent X is created or “born” in the time interval ∆t. If the condition is
false then there is no change in the population size.

4. We update the population size of X at the end of time interval ∆t, or tn+1
(the population has either increased by 1 or is the same as at time tn).

5. Update the absolute time tn+1 = tn + ∆t.

Figure 2.13a shows the results we obtained when testing this algorithm for the
simulation of a 0th order process. There is near-perfect agreement between the
ensemble of ABK simulation runs and the deterministic or CME prediction for
the average time trajectory of species X. We remind the reader that the deter-
ministic and CME formalisms have the same form for the differential equation
describing this process (equations 2.107 and A.48 in Appendix A.2). Finally, we
compared the magnitude of the standard deviation from our simulations to that
predicted by the CME (equation A.69) and again obtained excellent agreement
(Figure 2.13b).
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Figure 2.13 – Time course of 0th order process. Simulated time course for a 0th order
process with k0 = 1 sec−1, fixed time step increments ∆t = 0.01 sec, and NX,i = 0. a)
The green curve is a sample time trajectory of population X from a single simulation run.
The blue curve is the average population size obtained from an ensemble of ABK simulations
(n = 10000), and the gray dashed curves delineate the one-standard-deviation envelope. The
solution to the differential equation describing this process is shown as a red dotted line (it
agrees closely with the average trajectory obtained from the ABK simulation; R2 = 0.9999).
Note that the solution to the CME for < NX(t) > is the same as the deterministic one.
b) Comparison of the standard deviation in the population size of X obtained through an
ensemble of ABK simulations (n = 10000; blue curve) to the CME prediction (equation A.69;
red dashed curve). The agreement is excellent (R2 = 0.9994).
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2.6 Generalization of the ABK Algorithm
2.6.1 Transition Probability Expressions
We consider a process with the number of reactant species denoted by ξ. If a
particular reactant species is Ra, where the subscript a is an integer in [1, ξ],
the microscopic agent-based differential rate law with respect to this species is

−dNRa

dt
= k

ξ∏
i=1

fi(NRi , mi) . (2.109)

NRi
represents the number of molecules/agents of Ri, mi is an nonnegative

integer representing the order (or multiplicity), of the process with respect to
reactant Ri, and k is the microscopic rate constant for the process with overall
order M =

∑
mi.25 The function fi depends on the number of agents that the

population of each reacting species consists of, and we define it as

fi =



mi∏
j=1

[NRi
− (mi − j)] , mi ⩾ 1

1 , mi = 0 ,

(2.110)

where the second part of this piecewise function deals with 0th order processes.
For example, a process that depends on a species Ri with molecularity mi = 2,
would result in fi = NRi(NRi − 1) according to the above definition. This is
consistent with the agent-based interpretation of processes that we have used
in the preceding sections (e.g., equation 2.62).

We then define the per-agent kinetic complementarity factor (KCF), Ω, for
a process of overall order M ⩾ 1 and with respect to reactant Ra as follows:

ΩRa
≡

−dNRa/dt

NRa

. (2.111)

The precise form of the expression for ΩRa depends on which reactant we choose
to monitor the reaction progress by. ΩRa represents the number of possible
interactions that can lead to a reaction event for a given agent belonging to
the population Ra, scaled by the value of the microscopic kinetic constant k.
The intuition for the above definition lies in the fact that Ω “complements” the
population size of Ra in the microscopic form of the differential equation,

−dNRa

dt
= NRaΩRa . (2.112)

For instance, in 1st order processes an agent undergoes a transition indepen-
dently of others in the population, so Ω = k. This is the only case where Ω

25Note that the use of the subscripts a and i is meaningful here: Ra is a particular reactant
species that equation 2.109 applies to, whereas Ri on the right-hand side of 2.109 is indexed
over all reactant species.
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does not include a time-dependent population size of a species. For the 2nd

order process, A + B → X, if we monitor the process with respect to A then
ΩA = kNB(t); considering it with respect to B gives ΩB = kNA(t).

Therefore, given our treatment of 1st and higher order processes as Bernoulli
trials, the general form for the transition probability of a process with respect
to reactant Ra is

Pber,Ra = 1 − e−ΩRa ∆t. (2.113)

Similarly, the discretized form of the differential rate law yields a probability
expression of the form

Pdif,Ra = ΩRa∆t . (2.114)

We make two important comments on the limitations of obtaining numerical
values for Pber and Pdif , respectively:

1. The exponent in equation 2.113 must be small enough so that changes
in its value give distinct values for the probability Pber,Ra

(which has an
upper asymptotic limit of 1). With respect to numerical evaluation, we
note the heuristic condition,

ΩRa
∆t ⪅ 35 ∋ num (Pber,Ra

) < 1 , (2.115)

where num (Pber,Ra
) is the numerical value of the transition probability in

double-precision format (i.e., with 15 decimal figures). That is, values of
ΩRa∆t greater than 35 give probability values so close to 1 that they are
beyond the double-precision level of accuracy and the computed Pber,Ra

values are stored in computer memory as 1.
This condition is useful in deciding how small ∆t should/can be or if
there is a maximum population size that can be effectively modeled using
the ABK method. For instance, in a 2nd order process A + B → X with
k = 0.01 sec−1 and ∆t = 0.01 sec, Pber,A = 1−e−kNB∆t and the maximum
population size of B (or A when using Pber,B) is 3.5 × 105 agents in order
to satisfy condition 2.115. Practically, this limitation is not of major
concern because the ABK algorithm is most useful and computationally
efficient when modeling populations 2-3 orders of magnitude smaller than
this upper limit.

2. As we have previously mentioned, Pdif does not have an upper bound
(unlike Pber). Since we want Pdif = ΩRa

∆t ≤ 1, the following condition
must be true:

∆t ≤ 1
ΩRa

. (2.116)

Note that ensuring ∆t is small enough according to this condition makes
the preceding note about the accuracy of the numerical value of Pber,Ra

a
moot point.

The above conditions suggest that it is best to model large populations using the
Pber form of transition probabilities. Using condition 2.116 when ΩRa

is large
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results in ∆t being unreasonably small from the perspective of the number of
iterations required for the algorithm to run on. In that case, one can relax this
restriction by making ∆t bigger, however as long as condition 2.115 is satisfied
then the use of Pber is warranted.

2.6.2 General ABK Algorithm Implementation
An iteration of the ABK algorithm determines the change in the population sizes
as a result of a given process in the time interval ∆t. In the case of second and
higher order processes, we first choose a single reactant species population (Ra)
with respect to which the algorithm runs throughout the simulated time (i.e.,
sampling only members of the population Ra to assess if transition events occur
in each time step). The limiting reactant species population is the best choice
because it requires the smallest number of iterations (but the algorithm yields
accurate results for any other choice as well). We then perform the following
steps:

1. Evaluate the transition probability for each agent of Ra present at time
tn (where the variable n represents the nth time step of the algorithm)
using either the Pber or Pdif formalism.

2. Draw a random number ru from the standard uniform distribution in the
interval (0, 1).26

3. Check the condition that ru < P for each agent of Ra. If the condition is
true, then the state of that particular Ra agent (as well as any additional
ones according to the stoichiometry of the process) changes to 0, while
agents of the corresponding product species are created and their state
changes to 1. If the condition is false the state of all agents does not
change.

4. Sum up the number of agents in the populations of all species after all
probability conditions have been checked. These are the updated species
population sizes at the time point corresponding to the end of time interval
∆t, or tn+1.

5. Update the absolute time tn+1 = tn + ∆t, using either a fixed or variable
time step increment.

26Some implementations of pseudo-random number generators output a number in the semi-
open interval [0, 1). For instance, the Python function random.random() produces a number
in this range. In this work, we use the Matlab function rand that returns a number in the
open interval (0, 1). The use of either language’s library of functions is acceptable when
implementing the algorithm.
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2.7 Concurrent Processes and Mixed-Order Ki-
netics

We now consider the case where an agent of species A can participate in a num-
ber of distinct processes of varying overall order, each occurring independently
of the others and with its own kinetic constant. Before we generalize, we present
a treatment of the following example,

A
k1−→ X

A+B
k2−→ Y (2.117)

A
k3−→ Z ,

where we have serially numbered the kinetic constants that define this system
of processes.27 A member of species A can transition in any one of three dif-
ferent ways within a given time interval. The microscopic differential equation
describing the rate of disappearance of A is

−dNA
dt

= k1NA + k2NANB + k3NA

−dNA
dt

= NA (k1 + k2NB + k3) . (2.118)

It is easy to see that the terms in parentheses are the KCFs for each of the three
processes with respect to A. That is,

−dNA
dt

= NA (ΩA1 + ΩA2 + ΩA3) . (2.119)

We will derive expressions for the total transition probability. First, we can take
the sum of the KCFs,

ΩA = ΩA1 + ΩA2 + ΩA3 = k1 + k2NB + k3 , (2.120)

and use the Pber formalism to determine the total probability, Pber,A123, of an
agent of species A being converted to either X or Y or Z,

Pber,A123 = 1 − e−ΩA∆t = 1 − e−(k1+k2NB+k3)∆t. (2.121)

An alternative approach is to discretize equation 2.118 and rearrange to get

−∆NA
NA,i

= (k1 + k2NB + k3) ∆t = ΩA∆t . (2.122)

Using definition 2.25, the total transition probability for an agent A within ∆t
is

Pdif,A123 = ΩA∆t = (k1 + k2NB + k3) ∆t . (2.123)
27Here, the subscript of the kinetic constants does not refer to the overall order of each

reaction (as was done earlier in this chapter).
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As we have previously seen, this is the first order Taylor approximation around
∆t = 0 to equation 2.121.

Let us compare these results to determining the probability of occurrence of
each of the individual processes separately. Using the Pber formalism, we have

Pber,A1 = 1 − e−k1∆t (2.124)
Pber,A2 = 1 − e−k2NB∆t (2.125)
Pber,A3 = 1 − e−k3∆t. (2.126)

Since a reaction event for a given agent A can only occur through one of the
three processes and they occur independently of one another (by assumption),
the total probability PA123 must be equal to

PA123 = Pber,A1 + Pber,A2 + Pber,A3 . (2.127)

However, substituting the previously determined Pber,A123 for PA123 and the
expressions for the individual probabilities shows that the two sides of the above
equation are only approximately equal:

1−e−(k1+k2NB+k3)∆t ≈
(
1 − e−k1∆t)+(1 − e−k2NB∆t)+(1 − e−k3∆t) . (2.128)

Equality is approached only as ∆t → 0, underscoring the importance of using a
small enough time interval. It is easier to see the relationship between the two
sides of equation 2.128 by considering the linear approximation of the transition
probability for each of the three processes,

Pdif,A1 = k1∆t (2.129)
Pdif,A2 = k2NB∆t (2.130)
Pdif,A3 = k3∆t . (2.131)

Similarly, substituting Pdif,A123 into the left side of equation 2.128, we get

Pdif,A123 = Pdif,A1 + Pdif,A2 + Pdif,A3 (2.132)
(k1 + k2NB + k3) ∆t = (k1∆t) + (k2NB∆t) + (k3∆t) . (2.133)

The two sides are obviously equal, however the requirement of small ∆t still
holds since all factors are the first order Taylor approximations to their respec-
tive terms in 2.128.

Therefore, for a sufficiently small time interval ∆t, it is reasonable to divide
the unit interval into non-overlapping contiguous subintervals whose length cor-
responds to the probability of each of the processes. Then, the remainder of the
overall interval corresponds to the probability of no reaction, PA↛.

0 1

PA3 PAPA2PA1

It is easy to implement the ABK algorithm to determine which process occurs:
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if a random number ru drawn from the uniform distribution in the unit interval
is less than the sum of individual event probabilities, then a process involving
A occurs. In addition, the exact value of r determines which transition occurs
based on the subinterval of PA123 it falls in.

Equation 2.133 suggests another way to view the relationship between the
reaction probabilities: the fraction of PA123 that corresponds to the occurrence
of the first reaction is ΩA1/ΩA, the second ΩA2/ΩA, and the third ΩA3/ΩA. That
is, we can evaluate the numerical values of the transition probabilities,

PA1 = ΩA1

ΩA
PA123 (2.134)

PA2 = ΩA2

ΩA
PA123 (2.135)

PA3 = ΩA3

ΩA
PA123 . (2.136)

It is worth noting that considering all reactions an agent A participates in all
at once contributes to the algorithm’s computational efficiency. The procedure
we have outlined above requires just a single random number to determine if a
particular agent transitions and through which process.

We now extend these ideas to a general case where an agent has an arbitrary
number of paths to transition to other species. We present our findings in
abbreviated form.

2.7.1 General Case of Concurrent Processes
Consider a population of species Ra, where each agent can participate in up to
h distinct processes, each of overall order 1 or greater. In agreement with our
observations summarized in equation 2.119, the differential equation describing
how the population of Ra changes with time is

−dNRa

dt
= NRa

h∑
i=1

ΩRa,i , (2.137)

where ΩRa,i is the KCF of the ith process with respect to agent Ra. Then, given
the definition 2.16 of the probability of an agent not transitioning in any of the
h available ways within time interval ∆t,

PRa↛ = exp
(

−
h∑
i=1

ΩRa,i ∆t
)
, (2.138)

while the total probability of an agent Ra transitioning in any one of h ways is

PRa,tot = 1 − exp
(

−
h∑
i=1

ΩRa,i ∆t
)
. (2.139)
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PRa,tot has an upper bound of 1 and consists of non-overlapping contiguous
segments on the number line of the unit interval representing the probability of
each of the possible transition paths. That is,

PRa,tot =
h∑
i=1

PRa,i , (2.140)

where PRa,i = 1−e−ΩRa,i∆t ≈ ΩRa,i∆t. For a sufficiently small ∆t value, either
the Pber and Pdif formalisms can be used to determine the probability PRa,i.
Thus, the transition path an agent Ra will take is determined by the subinterval
a random number ru drawn from the uniform distribution in the unit interval
falls in. We illustrate this below (for the sake of simplicity and readability, we
denote the probabilities PRa,i as Pi).

0 1

P3 Ph...P2P1 PRa

This is an important result, as it suggests that if we want to efficiently model
numerous processes, we must first identify all the ways in which an agent of a
particular species can transition and then choose which process, if any, takes
place in ∆t using the procedure outlined above. We can then do this for all
species that have multiple transition paths. The algorithm is the same as pre-
viously described (subsection 2.6.2) and only one random number is needed to
decide between the multiple transition paths for a particular agent of a species.
Also recall that the time evolution of each process can be modeled by choos-
ing one and only one species with respect to which the transition probability
is evaluated. Thus, we can efficiently simulate a series of processes that have
a common reactant by simply determining which transition path each agent of
Ra takes on each iteration of the algorithm. Programmatically, a simple for

Follow this link and
this link to see the
Matlab code.

loop going through each of the Ra agents is enough to model the time evolution
of all processes having Ra as a reactant.

We illustrate the implementation of the algorithm using this approach by
presenting several examples in Figure 2.14. We have obtained excellent agree-
ment with the deterministically predicted time trajectories for populations of
all sizes, including for low copy number populations consisting of less than 10
agents.
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Figure 2.14 – Examples of concurrent processes simulated using the ABK algorithm.
Panels a and b show concurrent processes of the same order (1st and 2nd respectively), while
c and d show mixed-order processes. The rate constants for all processes are indicated in
the respective plot titles. We used fixed time interval increments of ∆t = 0.01 sec, the solid
curves represent the average population size of the indicated species as simulated with the
ABK algorithm (n = 500), the gray dashed curves are the one-standard-deviation envelopes
of the average population size (not shown for all species for clarity), the dotted curves are
the solution to the differential equation describing the time evolution of each species (not
easily visible because of the close agreement with the simulation results), and the magenta
curve is a sample time trajectory of a selected species population (not shown for all species
to avoid overcrowding the plots). a) Initial population sizes: NA,i = 100, NX,i = NY,i =
0. Agreement between average ABK trajectories and deterministic predictions: R2

NA
=

0.99998, R2
NX

= 0.99974, R2
NY

= 0.99925. b) NA,i = 100, NB,i = 50, NC,i = 125,
NX,i = NY,i = 0. R2

NA
= 0.99908, R2

NB
= 0.99571, R2

NC
= 0.99873, R2

NX
= 0.99872,

R2
NY

= 0.99852. c) NA,i = 100, NB,i = 70, NX,i = NY,i = 0. R2
NA

= 0.99998, R2
NB

=
0.99892, R2

NX
= 0.99940, R2

NY
= 0.99803. d) NA,i = 100, NB,i = 85, NC,i = 120,

ND,i = 75, NX,i = NY,i = 0. R2
NA

= 0.99830, R2
NB

= 0.99969 = R2
NX

, R2
NC

= R2
ND

=
0.99735 = R2

NY
. Note that the scale of the horizontal (time) axis varies between plots.
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2.8 Birth-Death Process
We now present an important example of mixed-order processes with partic-
ular relevance to biological systems: the 0th order production (or “birth”) of
molecules/agents belonging to a given species, and their 1st order degradation
(or “death”). In summary,

∅ kb−→ A
kd−→ ∅ , (2.141)

where kb is the microscopic 0th order rate constant for the production of A,
and kd the 1st order rate constant for its degradation. We can use the ABK
algorithm to model this system by evaluating the effect of each of the two
processes on the population size of A within a given time interval. The general
way of dealing with concurrent processes we presented in the preceding section
applies to reactions of order 1 or greater. When a 0th order process is one of
the considered processes, it must be accounted for separately from the others
because its progression does not depend on the population size of A. Therefore,
we evaluate whether a single “birth” event occurs in each time step ∆t (i.e., the
population of A increases by 1) and whether each of the A agents present at the
beginning of ∆t undergoes a degradation event.

The differential equation describing this birth-death process is

dNA
dt

= kb − kdNA . (2.142)

The above equation is linear and separable, and therefore can be easily solved
to obtain

NA(t) = kb
kd

(
1 − e−kdt

)
, (2.143)

for an initial condition of NA,i = 0. The steady-state value28 can be easily
computed to be

Follow this link to
see the Matlab code.

N∗
A = kb/kd . (2.144)

We present here the results of a simulation with NA,i = 0 and kinetic con-
stants kb = 0.10 sec−1 and kd = 0.01 sec−1. Given these values for the kinetic
constants, we get N∗

A = 10. The average trajectory of NA(t) obtained through
an ensemble of ABK simulations (n = 500) closely matches the deterministic
prediction (equation 2.143; R2 = 0.9981; see Figure 2.15a). We also found excel-
lent agreement between the standard deviation of the average ABK trajectory
(n = 5000) and the theoretical prediction obtained through the CME for this
birth-death process (Figure 2.15b; see Appendix A.2 for the derivation of the
variance and standard deviation as predicted by the CME).

Finally, we plot a widely-used measure of noise, the coefficient of variation,
η, defined as

η(t) = SDev(<NA(t)>)
<NA(t)> . (2.145)

28We will heretofore use the notation of a superscript asterisk to indicate a steady state
value for a given quantity.
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Given that a birth-death process is Poissonian (see derivation leading to equa-
tion A.38 in Appendix A), it has the property that SDev =

√
<NA>. The

coefficient of variation for such a process then is

ηP (t) = 1√
<NA(t)>

, (2.146)

where ηP is the coefficient of variation for a Poissonian process. Figure 2.15
shows that η(t), obtained from an ensemble of ABK simulations, matches ηP (t).
This indicates that the intrinsic noise in the random production and degradation
of A fully accounts for the observed variance in the time trajectory.
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Figure 2.15 – Time course of a birth-death process: ∅ → A → ∅. We used the ABK
algorithm to simulate concurrent 0th and 1st order reactions (birth-death process) for the
production and degradation of agents belonging to species A. Initial condition NA,i = 0,
kinetic constants kb = 0.10 sec−1 and kd = 0.01 sec−1. Algorithm parameters: fixed time
step increments of ∆t = 0.01 sec, P∅→X for the 0th order process (equation 2.108), Pber

transition probabilities for the 1st order degradation of A (we obtained identical results using
Pdif ). a) The solid blue curve shows the average time trajectory of the population A,
< NA(t) >, obtained from repeating the ABK simulation 500 times. The one-standard-
deviation envelope is also shown (gray dashed curves), and the magenta curve is a sample
time trajectory from a single simulation run. Finally, the blue dotted curve is the solution to
the differential equation, NA(t) = kb

kd

(
1 − e−kdt

)
. The coefficient of determination when

comparing <NA(t)> and the deterministic trajectory is R2 = 0.9981. b) Comparison of the
magnitude of the standard deviation obtained from 5000 repetitions of the ABK simulation
(blue curve) and as predicted by the CME (red dashed curve; see Appendix A.2 for the
derivation). R2 = 0.9957. c) Comparison of the coefficient of variation, η, obtained from
the simulation data (n = 5000), and that expected for a Poissonian process (ηP ).
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2.9 Processes under Regulatory Control
We now consider processes whose rate constant is modulated by agents of the
same or another species, usually in a nonlinear way, thus affecting the temporal
evolution of the populations taking part in the process. Such regulatory feed-
back or feedforward mechanisms can be either positive or negative, leading to
activation (up-regulation, or increase in the rate of the process) or repression
(down-regulation, or decrease in the rate of the process), respectively.

We consider a 1st order process A → X that is regulated by X,29 and has a
rate constant ko in the absence of any regulation.30 We introduce the function F ,
which we shall refer to as the microscopic regulation scaling function (henceforth
abbreviated as RSF), such that the effective rate constant is

k = ko F (NX), (2.147)

where F has the form

F (NX) = KnH
50 + αNnH

X

KnH
50 +NnH

X

=
1 + α

(
NX

K50

)nH

1 +
(
NX

K50

)nH
. (2.148)

We assume that α, the Hill coefficient nH , and K50 are time-independent pa-
rameters, while the population size NX is time-dependent. The parameter α
denotes the degree of activation or repression and is the asymptotic limit of F
(i.e., the effective rate constant approaches αko as NX → ∞). In summary, the
parameter α defines the mode or type of regulation:

Type of Regulation :


αko < k ≤ ko , 0 ≤ α < 1 (Repression)
k = ko , α = 1 (No Regulation)
ko < k ≤ αko , α > 1 (Activation).

(2.149)

Note that αko is the minimum value that k can have in the case of repression,
while it is the maximum value of k in the case of activation.

F also has the property that F (0) = 1, so k = ko in the absence of X agents.
Complete repression corresponds to α = 0, and F → 0 ⇒ k → 0 as NX → ∞
(Figure 2.16, blue curve). K50 is the number of agents of X producing half-
maximal activation or repression31 with respect to the range of F , thus yielding

29The same mathematical expressions and considerations apply to feedforward regulation;
that is, if A up- or down-regulates its own conversion to X. In general, a process can be
regulated by a number of different species. Here, we consider the simplest case where only
species X affects the rate of the process.

30For instance, many biological processes (e.g., transcription) are known to be “leaky,” thus
maintaining a level of activity even in the absence of activation.

31K50 is the microscopic form of EC50, or half-maximal effective concentration, a com-
monly used term in the biochemical literature. We retain the subscript “50” to indicate 50%
saturation or activity compared to the maximum/minimum level. The conversion can be ac-
complished by K50 = EC50(NAvV ), where V is the system volume and NAv is Avogadro’s
number.
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the value,
F50 = 1 + α− 1

2 . (2.150)

We also show the microscopic form of the well-known Hill function (Hill, 1910),
which we shall refer to as H, and depends on NX in the following way:

H(NX) = NnH

X

KnH
50 +NnH

X

=

(
NX

K50

)nH

1 +
(
NX

K50

)nH
. (2.151)

The function H is a hyperbola for 0 < nH ≤ 1 and sigmoidal for nH > 1, has
the property H(0) = 0, and monotonically increases to the asymptotic limit of
1. K50 is the number of agents of X which make H = 1/2 (i.e., half-maximal
activation/repression). The dependence of the effective rate constant on H has
the form

k = ko + (αko − ko)H, (2.152)

where the leading additive term, ko, represents a vertical shift and the multi-
plicative factor αko − ko stretches or compresses the curve of H depending on
the value of α. These transformations ensure that H can be scaled to have the
appropriate range and behavior for any regulatory process. Rearranging the
above equation, we get

k = ko + ko(α− 1)H (2.153)
= ko [1 + (α− 1)H] . (2.154)

Combining this observation with equation 2.147, the relationship between F
and H becomes apparent.

F = 1 + (α− 1)H (2.155)

The reader can verify that the plots of F and 1 + (α − 1)H are identical (Fig-
ure 2.16). Note that in the case of repression, α − 1 < 0, thus k decreases as
NX increases.

Follow this link to
see the Matlab code.

Therefore, the dependence of k on either the scaled form of the Hill function
(equation 2.154) or RSF (equation 2.147) is the same, and both implementations
produce identical results when used to compute transition probabilities in the
ABK algorithm. We verified this by simulating the time course of A → X,
with X regulating the kinetics of the process for initial populations NA,i =
20 agents, NX,i = 0 agents, and K50 = 10 agents of X (Figure 2.17). We
used either the Pber = 1 − e−k∆t or Pdif = k∆t equations for evaluating the
transition probability of each agent A within time interval ∆t, with the rate
constant k determined using either the Hill function or RSF. We have plotted
time trajectories for processes without (nH = 1) and with cooperativity (nH =
2). In the case of complete repression (α = 0) and nH = 2, the change in
population size is steeper than in the absence of cooperativity (nH = 1) in the
neighborhood of NX = 10 = K50. This is expected given that the steepness of
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Figure 2.16 – Sample forms of the RSF. This figure shows the dependence of the regulation
scaling function, F , on parameters α and nH . In all cases the curves asymptotically approach
the value of F = α as NX → ∞. In this example, K50 = 60 is marked by the vertical dashed
gray line (agents of X producing half-maximal activation/repression), and its horizontal
branches indicate the F50 values corresponding to the different curves (equation 2.150).
Note that when nH = 1 the resulting curve is hyperbolic, while for nH > 1 the curve
becomes increasingly sigmoidal, a sign of greater cooperativity. α = 1 corresponds to no
regulation (F = 1 for all population sizes of X, green line). The blue and red curves are
examples of repression (down-regulation), while the magenta and black curves represent
activation (up-regulation).

the RSF (or the Hill function) is greatest when the population size is K50 (see
solid red and dot-dashed dark red curves in Figure 2.17).

Finally, we briefly present the case where the rate of a process is modulated
by agents from multiple species. If the rate of the conversion A → X depends
on both A and X agents,32 then the overall RSF is

F = F (NA)F (NX), (2.156)

with each of the functions having its own set of parameters (α, K50, nH).
Similarly, the overall Hill function is

H = H(NA)H(NX), (2.157)

and all of our previous remarks on how to calculate the effective rate constant
k still apply.

32This can be thought of as a logical AND gate. Other logical relationships between the
regulating species are also possible (OR, XOR, etc.).
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Figure 2.17 – Time course of 1st order process with feedback regulation. We simulated
the conversion A → X, where X regulates the kinetics of the reaction with rate constant
k according to the scaling function F or 1 + (α − 1)H (equations 2.147, 2.154). We
repeated each simulation 500 times using the ABK algorithm (fixed time step increments
∆t = 0.01 sec, Pdif transition probabilities) to obtain the average population size of A
(along with its standard deviation; not shown). We used the following parameters for all
simulations: NA,i = 20 agents, NX,i = 0, basal rate constant ko = 0.10 sec−1, K50 = 10,
with α and nH values as indicated in the legend. All trajectories showed excellent agreement
with the numerically-obtained solution to the differential equation used to describe these
processes (not shown).

2.10 Reversible Processes
We continue our presentation of the ABK algorithm’s effectiveness in simulating
the time course of basic reaction schemes by considering the reversible process

A⇌ X, (2.158)

with 1st order rate constants kf and kr for the forward and reverse reactions
respectively. Notice that synthesis and degradation of each of the species are
not part of the reaction scheme. Therefore, the combined number of A and X
agents, NTOT , is a constant. The populations of A and X reach a steady state
when the rates of the forward and reverse reactions are equal, leading to

N∗
A

N∗
X

= kr
kf

, (2.159)

where the star in the superscript indicates the steady-state value of the re-
spective populations. Equation 2.159 can be solved explicitly for N∗

A given the
assumption,

NTOT = NA(t) +NX(t) = N∗
A +N∗

X . (2.160)
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Solving for N∗
A, we get

N∗
A = kr

kf + kr
NTOT . (2.161)

Follow this link to
see the Matlab code.

We treat this reaction scheme as consisting of two separate 1st order processes
and use the ABK algorithm to simulate each one separately from the other.
Figure 2.18 shows the results of simulating A⇌ X for initial populations NA,i =
10, NX,i = 10 agents, and rate constants kf = 0.04 sec−1 and kr = 0.20 sec−1.
Based on these parameters, we predict N∗

A = 16.667 (equation 2.161), while
the average of 500 simulation runs using the ABK algorithm yielded a value of
<NA(25.0 sec)>= 16.664.
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Figure 2.18 – Time course of a reversible process. We used the ABK algorithm to simulate
the time evolution of the reversible process A ⇌ X, with forward and reverse 1st order rate
constants kf = 0.04 sec−1 and kr = 0.20 sec−1. The initial population sizes are NA,i = 10,
NX,i = 10 agents. Algorithm parameters: fixed time step increments ∆t = 0.01 sec, Pdif

transition probabilities (Pber produced identical results). The solid curves are the average
time trajectory for species A and X over 500 repetitions of the simulation. The gray dashed
curves show the one-standard-deviation envelope for the time course of species X (not shown
for species A). The magenta curve is a sample trajectory for species A. Finally, the dotted
curves show the solution to the differential equation describing this process (not easily visible
because of the close agreement with the simulation results; R2 = 0.9987).
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2.11 The Michaelis-Menten Reaction Scheme
2.11.1 Full Treatment
We now analyze a very important process for biochemical systems where an
enzyme, E, catalyzes the conversion A → X. An accurate description of this
process was first published by the German biochemist Leonor Michaelis and the
Canadian physician Maud Menten (1913).33

We consider here the most commonly used mechanistic scheme describing
the overall conversion of the substrate A to X,

E +A⇌ EA → E +X, (2.162)

which we shall refer to as the “full treatment” (as opposed to an abbreviated
one presented in the next subsection). The forward and reverse reactions in
E + A ⇌ EA have rate constants kf and kr, respectively, and kcat is the rate
constant for the dissociation of the complex EA (commonly referred to as the
enzyme-substrate complex) to the product X and the regenerated catalyst E.
We assume that the rate of the uncatalyzed reaction is negligible in the absence
of E.

In keeping with our earlier comments on the use of the ABK algorithm,
we explicitly model each of the three reactions in this reaction scheme. We

Follow this link to
see the Matlab code.

present the results of an ABK simulation with initial population sizes NA,i = 20,
NE,i = 5, NX,i = 0 in Figure 2.19. The average simulation trajectories are vir-
tually indistinguishable from the numerical integration results of the differential
equations describing the reaction scheme. Notice that the substrate population,
NA, is not significantly greater than the total number of enzyme molecules,
therefore the assumption that NEA is in a steady state (i.e., dNEA/dt = 0) is
not warranted. In fact, the black curve in Figure 2.19, representing the average
population size of EA, computed from an ensemble of ABK simulations, reveals
that NA is not large enough to saturate the enzyme for any significant period
of time.

We have also tested the ABK algorithm for many other choices of parameters
and population sizes and have observed exceedingly good agreement with the
deterministic predictions. We conclude that the full treatment of the Michaelis-
Menten reaction scheme is ideal for modeling such processes regardless of how
small the population sizes are, provided that the mechanistic details and kinetic
parameters are known. More complicated schemes (e.g., when product forma-
tion is reversible, EA⇌ E +X, or if an enzyme-product complex, EX, is also
reversibly formed) can be easily accommodated by the algorithm as additional
elementary processes.

We will next consider an abbreviated form of this reaction scheme that sig-
nificantly reduces the computational time devoted to modeling enzymatic reac-
tions obeying such kinetics. The proposed simplification hinges on whether the

33The interested reader may consult Gunawardena (2012) for an absorbing perspective on
the use of mathematical models in the context of Michaelis and Menten’s original studies.
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Figure 2.19 – Time course of enzymatic process using the full treatment of the Michaelis-
Menten reaction scheme. We used the ABK algorithm to explicitly model each of the three
reactions in the Michaelis-Menten scheme (2.162) with microscopic rate constants kf =
0.01 sec−1, kr = 0.05 sec−1, kcat = 0.05 sec−1, and initial population sizes NA,i = 20,
NE,i = 5, NX,i = 0. Algorithm parameters: fixed time step increments ∆t = 0.01 sec, Pdif

transition probabilities (use of Pber yielded identical results). The solid curves are the average
time trajectory (n = 500) for species A (substrate), EA (enzyme-substrate complex), E (free
enzyme), X (product). The gray dashed curves show the one-standard-deviation envelope for
the time course of species X and EA (not shown for species A and E for clarity), while the
magenta curve is a sample trajectory for species A. Comparison of the average trajectories
to the deterministic predictions: R2

NA
= 0.9998, R2

NE
= R2

NEA
= 0.9970, R2

NX
= 0.9998.

steady-state approximation is valid and a modeler’s desire to balance accuracy
and speed of the algorithm when many processes are considered.

2.11.2 Abbreviated Treatment
It is more often true than not that the rate constants for the intermediate steps
of an enzymatic reaction are not known. It is instead common for biochemists to
experimentally determine the Michaelis constant, which “bundles” the kinetic
parameters of the full treatment. Accordingly, it may be necessary to model
an abbreviated treatment of the Michaelis-Menten scheme where the conversion
A → X is treated as a single-step process.

It can easily be shown that assuming the scheme 2.162 and dNEA

dt ≈ 0, then
for the time period during which this assumption is true,

−dNA
dt

= dNX
dt

= kcatNE,iNA
KM +NA

. (2.163)

We define KM as the microscopic Michaelis constant,

KM = kr + kcat
kf

. (2.164)
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KM represents the number of molecules of A that produce a half-maximal rate
of product formation and is generally interpreted as a measure of the affinity
between the enzyme and a substrate molecule (the smaller the value of KM , the
greater the affinity).34 Equation 2.163 yields a hyperbolic curve when plotting
the rate −dNA/dt as a function of NA, and the maximal rate is kcatNE,i.35

The assumption that the intermediate species EA is at a steady state on a
given time scale is sometimes referred to as the quasi-steady-state assumption,
and it is useful in reducing the dimensionality of the system at hand. In this
case, it means that we will not have to explicitly keep track of the species EA
in our ABK simulations.

We can use expression 2.163 and the methods developed in earlier sections to
derive the transition probability for the process A → X during a time interval
∆t of arbitrary length. Namely, we discretize equation 2.163, divide both sides
by NA(t), and use our definition of Pdif to get

Pdif = kcat
NE,i

KM +NA(tn) ∆t , (2.165)

where ∆t = tn+1 − tn. We denote this transition probability as Pdif to indicate
that it was derived from the discretized differential rate law describing the overall
process. In accordance with the formalism we introduced earlier, the kinetic
complementarity factor (KCF) with respect to the substrate species A, is

ΩA = kcat
NE,i

KM +NA(tn) . (2.166)

This means that the transition probability can also be expressed as

Pber = 1 − exp
(

−kcat
NE,i

KM +NA(tn)∆t
)
. (2.167)

Notice that this expression fits the general form that we described for 1st order
processes (after all, the overall reaction is A → X), except the rate constant kcat
is multiplied by a nonlinear term in the KCF. We have already seen a similar case
when we discussed processes under regulatory control. Since only one reaction
and, therefore, one transition probability expression needs to be evaluated, the
abbreviated method of modeling Michaelis-Menten kinetics is computationally

34The Michaelis constant is typically expressed in units of molarity and can be easily con-
verted to its microscopic form. In keeping with the notation we introduced in section 2.1, if
K′

M is the molar (macroscopic) Michaelis constant, then for a process occurring in volume V ,
its microscopic counterpart is KM = K′

M (NAvV ).
35In practice, it is the initial rate vs. substrate population size that’s hyperbolic, thus

accounting for complicating factors on the reaction rate in real systems. Such factors include
enzyme inhibition upon accumulation of product, progressive enzyme inactivation, and the
effect of reversibility (in general, since an enzyme does not alter the equilibrium of an overall
reversible process A ⇌ X, it can catalyze the reverse reaction as well). Since we have not
explicitly modeled any processes in addition to those stated in reaction scheme 2.162 (i.e.,
we consider an idealized system without degradation, inhibition, or overall reversibility), the
distinction of using initial rates is unimportant for our purposes here.
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faster and easier to programmatically implement. Our approach has also been
used by other researchers to simplify the modeling of enzymatic reactions using
Gillespie’s algorithm (Rao and Arkin, 2003), leading to a propensity function
that is consistent with the KCF we described above.

We have simulated the time evolution of the overall process A → X using this
abbreviated treatment of Michaelis-Menten kinetics, with initial populations
NA,i = 20, NE,i = 5, NX,i = 0 (same initial conditions as in the full treatment
example), and parameters kcat = 0.05 sec−1, and KM = 10. Note that this
value of KM is computed using equation 2.164 with kf = 0.01 sec−1, and kr =
0.05 sec−1(again, same kinetic parameters as in the full treatment example). We
summarize the results of the ABK simulation in Figure 2.20.
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Figure 2.20 – Time course of enzymatic process using the abbreviated treatment of the
Michaelis-Menten reaction scheme. We used the ABK algorithm to model the abbreviated
form of the Michaelis-Menten scheme (A → X, with rate equation 2.163). Model parame-
ters: rate constant kcat = 0.05 sec−1, microscopic Michaelis constant KM = 10, and initial
population sizes NA,i = 20, NE,i = 5, NX,i = 0. Algorithm parameters: fixed time step in-
crements ∆t = 0.01 sec, Pdif transition probabilities (equation 2.165; we obtained identical
results when using Pber, equation 2.167). The solid curves are the average time trajectories
for species A and X over 500 repetitions of the simulation. The gray dashed curves show
the one-standard-deviation envelope for the time course of species X (not shown for A),
while the magenta curve is a sample trajectory for A. The dotted curves show the solution
to the differential equation describing this process (equation 2.163; not easily visible because
of the close agreement with the simulation results). Comparison of the average ABK and
deterministic trajectories: R2 = 0.9995.

Generally, the condition that satisfies the quasi-steady-state assumption
is (Segel and Slemrod, 1989),

NE,i
KM +NA,i

≪ 1 . (2.168)

Clearly, the approximation is valid when the population of A is much greater
than the number of available enzyme molecules E (i.e., excess substrate) and
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for high KM values. We have tested cases that satisfy these criteria and found
that the full and abbreviated treatments give virtually identical results, thus
justifying the modeling of Michaelis-Menten kinetics as a single-step reaction.
The agreement was especially good during the time period when the enzyme
is saturated and the quasi-steady-state assumption holds. This is clearly not
the case in the example we have presented in this section, and the difference
between the two approaches is visible in Figure 2.21.
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Figure 2.21 – Full vs. abbreviated treatments of Michaelis-Menten kinetics. The curves
show the ABK simulation results for the full (reaction scheme 2.162) and abbreviated (A →
X, with rate equation 2.163) treatments of Michaelis-Menten kinetics. All kinetic parameters
are the same as in Figures 2.19 and 2.20.

This example is instructive in helping us decide when a chosen treatment of
this reaction scheme is appropriate for use with the ABK algorithm. When the
mechanistic details and kinetic parameters of an enzymatic reaction are known
with confidence, then the full treatment of the reaction scheme will give an accu-
rate temporal evolution of all species. The same method is preferable when the
ratio of substrate to enzyme molecules is not large (as in our example). On the
other hand, use of the abbreviated treatment is justified when condition 2.168
is met.
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Chapter 3

Signal-Response Motifs of
Homogeneous Populations,
and Other Models

In this chapter we examine the effectiveness of the ABK method in describing
what we shall refer to as motifs, modules or sets of interspecies interactions that
produce qualitatively distinct types of behavior. We will refer to species whose
quantifiable levels we interpret as input to the system as the signal or stimulus
(or external forcing) S, while the output is the population size of species R, the
response. We find this is a useful way to idealize the interspecies connectivity
patterns in these motifs to describe a diverse array of phenomena. We will
mainly present our findings from the perspective of molecular signaling in bio-
logical systems, but these motifs can also be considered to occur at higher levels
of hierarchical organization (e.g., physiological, organismal, societal). We invite
the reader to apply these concepts to as many different contexts as possible.

The motifs we will present serve as units of “structure” from which com-
plex systems are constructed, and their properties are important to understand
when using a bottom-up approach to designing systems where the emergence of
complex behavior is desired (as in the field of synthetic biology). We take a sim-
ilar approach to Tyson et al. (2003) and start by presenting simple motifs that,
upon modification, exhibit increasingly complex behavior and nuanced signal-
response relationships that could not have been easily predicted by mere inspec-
tion of the interspecies connectivity or knowledge of the system’s kinetic param-
eters. We will also find that simulations performed using the ABK methodology
can be used to probe the effect of stochasticity on the time trajectories of species
with small population sizes.

We stress here that the investigations we present in this chapter are on
systems comprising homogeneous species populations, as was the case in the
preceding chapter. Our goal is to further validate the ABK method and es-
tablish it as suitable for simulating complex systems whose time evolution can
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still be compared to deterministic predictions. We will turn our attention to
heterogeneous populations in the next chapter.

Finally, we will consider well-known models that are loosely based on phys-
ical or biological processes, but are nonetheless useful because of their math-
ematical simplicity. Specifically, we consider the Lotka-Volterra predator-prey
competition model, the Kermack-McKendrick model of infectivity, and the Brus-
selator. We will show that application of the ABK methodology is straightfor-
ward even for those models and provides insight into the role of stochasticity in
system dynamics.
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3.1 Simple Graded Response Systems
We begin with simple motifs that are straightforward extensions of the processes
we presented in Chapter 2 and that produce graded (or continuous) responses.
First, we consider a birth-death process of species R and add a signal species,
S, that promotes the birth of the response element. This results in the steady
state of R increasing linearly with the population level of S. On the other hand,
when an agent/molecule of S promotes one direction of a reversible process, the
steady-state level of R is hyperbolic with increasing S. This type of response is
sometimes referred to “Michaelian” because it features the same characteristics
of initial increase followed by saturation as in the Michaelis-Menten description
of enzyme kinetics (although they are different sets of quantities that display
this hyperbolic relationship: reaction velocity vs. level of substrate in Michaelis-
Menten kinetics, while in our case the steady-state population size of R vs. S).

3.1.1 Linear Response Motif
We consider an extension of the one-species birth-death process we presented
in section 2.8 by adding species S that promotes the synthesis of R as shown
below.

Figure 3.1 – Linear response motif. A birth-death process where S promotes the synthesis
of R. We assume that the population size of S does not change.

The processes governed by kinetic constants kb (0th order synthesis of R)
and kd (1st order degradation of R) are straightforward based on the reactions
we have examined in the previous chapter. The process marked by a green
dashed arrow in the above figure signifies that S promotes the synthesis of R
via a process that can be viewed as either 0th order with a rate constant of
bundled terms ksNS , or 1st order with respect to NS and rate constant ks. The
reason for this dual interpretation is that we assume that the population of S
agents, NS , does not change.

This motif can be considered a simplified description of the following bio-
logical process: a repressed gene is transcribed at a basal level (“leaky” activity
with rate constant kb), thereby producing mRNA transcripts (R) which degrade
with 1st order rate constant kd. A surge in transcription occurs when inducer
molecules (S) bind to the repressor, thus allowing the RNA polymerase complex
to bind to the DNA and synthesize transcripts with rate constant ks (note that
the repressor, DNA molecule, and RNA polymerase are not explicitly shown
as distinct species in the motif). The more inducer molecules are present, the
more the repressor-gene complex binding equilibrium is pushed toward the dis-
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sociated state, thus allowing transcription to occur. A particularly well-studied
example of this type of regulation is when repression of the lac operon by the
tetrameric lac repressor is relieved by the inducer allolactose. In our case, since
we assume that the population of species S (the inducer) does not change over
time, S plays the role of isopropyl β-D-1-thiogalactopyranoside (IPTG), the
non-hydrolyzable synthetic analog of allolactose.

This motif is described deterministically by the ODE

dNR
dt

= (kb + ksNS) − kdNR , (3.1)

where we have grouped the terms related to the synthesis of R in parentheses.
By assumption, NS is constant, therefore kb + ksNS = constant (notice the
resemblance to equation 2.142). Setting dNR/dt = 0, we find the steady-state
value for the population of R,

N∗
R = kb + ksNS

kd
. (3.2)

Based on this formula, it is clear that if enough time passes to allow the popula-
tion of R to reach its steady-state value, then performing separate experiments
with a greater number of S agents should lead to an increase in N∗

R. This equa-
tion then captures exactly what we mean by a linear response motif: increasing
the signal/stimulus (or input) increases the response (the output) in a linear
way.

Follow this link to
see the Matlab code.

We verified this proposal by using the ABK algorithm to model this set of
processes. In our example, we assumed kinetic constants of kb = 0.02 sec−1,
ks = 1.00 sec−1, kd = 0.02 sec−1, for an initial population NR,i = 0, and a
total simulated time of 700 sec (this is significantly longer than the amount of
time required to reach the steady state) using fixed time step increments of
∆t = 0.02 sec. We ran separate experiments/simulations for NS values ranging
from 0 to 20 agents/molecules (with NS staying constant in each experiment),
and estimated N∗

R by averaging the population size of R over the course of the
last 300 sec of simulated time. This allowed us to account for the variation in
population size due to stochasticity once the steady state had been reached (we
do not show the time course curves here). Figure 3.2 shows the determinis-
tic signal-response (SR) curve (blue line; equation 3.2) with the corresponding
values obtained through the ABK simulation. The agreement is excellent (cor-
relation coefficient, R = 0.9993).
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Figure 3.2 – Linear response motif: SR curve. We simulated the time evolution of the
reaction scheme outlined in Figure 3.1 using the ABK algorithm. Simulation parameters:
kinetic constants of kb = 0.02 sec−1, ks = 1.00 sec−1, kd = 0.02 sec−1, for an initial
population NR,i = 0, and a total simulated time of 700 sec using fixed time step increments
of ∆t = 0.02 sec. We performed separate simulations for distinct integer values of S agents
(NS = 0 − 20) promoting the production of R, where we assumed that the population of
S remains constant. a) We plot here the estimated steady-state population size of R, N∗

R
(averaged over the course of the last 300 sec of simulated time) vs. NS for each of the
performed simulations (red crosses). The blue curve (marked “DE” in the legend) is the
deterministic SR curve (equation 3.2). The agreement between the ABK simulations and
the deterministic SR curve is excellent (R = 0.9993). b) We repeated the ABK simulation
(n = 100) for each value of NS to obtain an average value and standard deviation of N∗

R.
The resulting <N∗

R > vs. NS curve had an exceedingly good fit to the expected straight
line (R = 0.9999). The gray dashed lines outline the one-standard-deviation envelope.

3.1.2 Hyperbolic Response Motif
We now examine a hyperbolic relationship between the signal and response
elements. Consider a reversible process between species A and R, where the
signal S promotes the forward conversion of A to R, as shown below.

Figure 3.3 – Hyperbolic response motif. kf and kr are the microscopic rate constants for
the forward and reverse reactions respectively. We assume that S promotes, or favors, the
forward transition A → R, and that the number of S agents does not change.

We further assume that no additional synthesis or degradation processes are
taking place, therefore the number of S agents and the combined population of
A and R stay constant. In other words,

NTOT = constant = NA(t) +NR(t) (3.3)
NS = constant . (3.4)
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We note that we can alternatively think of S as a catalyst being regenerated
during the conversion of A to R. In that case, we can simply write the motif in
chemical reaction notation as A+ S ⇌ R+ S.

Once we have set the size of the combined populations of A and R (NTOT ),
equation 3.3 relates NA and NR in an exact way, thus the system can be de-
scribed by only one variable. Accordingly, we choose to monitor the time evo-
lution of species R to understand the dynamics of the system. Given these
assumptions, we use the law of mass action to deterministically describe NR(t),

dNR
dt

= kfNS (NTOT −NR) − krNR . (3.5)

To find the steady-state population of R, N∗
R, we set dNR/dt = 0 and solve for

N∗
R.

N∗
R = NTOTNS

kr

kf
+NS

(3.6)

Thus, we expect that as long as we simulate the time evolution of this reac-
tion scheme for enough time so that the steady state is reached, the SR curve
should be hyperbolic and in the limit of large NS , N∗

R → NTOT (i.e., response
saturation).

Figure 3.4a shows an easy graphical way to understand this relationship.
The rate-balance plot shows how the rates of synthesis and degradation of NR
vary as a function of NR. These rates correspond to the first and second terms
in the linear differential equation 3.5, respectively. Since the rates of synthesis
and degradation of R are exactly equal at the intersections of these lines, the
plot shows the progression of N∗

R values as NS increases. It is apparent that
increasing NS causes the spacing between the intersections to increase more
slowly, as would be predicted by a hyperbolic relationship between N∗

R and NS
(equation 3.6).

Follow this link to
see the Matlab code.

We tested this prediction by simulating this reaction scheme using the ABK
algorithm. We considered a combined population size of A and R, NTOT = 100,
initial populations NA,i = 25 and NR,i = 75, and microscopic kinetic constants
kf = 0.01 sec−1 and kr = 0.10 sec−1. We treated the forward reaction either as
a 2nd order process (with rate constant kf ) or as a 1st order process with an
effective rate constant of kfNS (because NS is constant by assumption), and
obtained identical results using both approaches. We then performed distinct
simulations for integer values of NS ranging from 0 to 40, for a total simulated
time of 50 sec with fixed time step increments ∆t = 0.01 sec. In each case
we determined N∗

R by averaging the population size NR over the last 25 sec of
the simulation to account for stochastic fluctuations once the steady state had
been reached. Figure 3.3b shows the SR curve we obtained through simulation
(red crosses) and the deterministic prediction (blue curve; equation 3.6). The
agreement between simulation and the predicted hyperbolic curve is excellent
(coefficient of determination, R2 = 0.9844). Repeating the simulation for each
NS value (n = 100) to obtain an average value for N∗

R makes the fit to the
hyperbolic curve nearly perfect (Figure 3.3c).

88

https://github.com/alexplaka/ABK/tree/master/Homogeneous_Pops/3a_HyperbolicRes/


0 20 40 60 80 100

0

5

10

15

20

25

30

35

40

a)

0 5 10 15 20 25 30 35 40

0

10

20

30

40

50

60

70

80

90

100

b)

0 5 10 15 20 25 30 35 40

0

10

20

30

40

50

60

70

80

90

100

c)

Figure 3.4 – Hyperbolic response motif: rate-balance plot and SR curve. We simulated the
time evolution of the motif outlined in Figure 3.3. Simulation parameters: kinetic constants
kf = 0.01 sec−1, kr = 0.10 sec−1, initial populations NA,i = 25 and NR,i = 75. a) Rate-
balance plot showing the rates of synthesis (green) and degradation (magenta) of NR as a
function of NR. Synthesis also depends on NS , so we have plotted the synthesis curves for
values of NS = 0 − 40 (shown here in multiples of 5; selected NS values are printed on the
graph). The intersections (marked by the hollow black circles) represent the steady-state
values of population R, N∗

R. b) We used the ABK algorithm to model this motif for a total
simulated time of 50 sec using fixed time step increments of ∆t = 0.01 sec. We performed
separate simulations for distinct integer values of S agents (NS = 0−40), and assumed that
NS remains constant. We estimated N∗

R in each simulation by averaging over the course
of the last 25 sec of simulated time. We plot here N∗

R vs. NS for each of the performed
simulations (red crosses). The blue curve (marked “DE” in the legend) is the deterministic
SR curve (equation 3.6). The agreement between the ABK simulations and the deterministic
prediction is excellent (R2 = 0.9844). c) We repeated the simulation (n = 100) for each
value of NS to obtain the average and standard deviation of N∗

R. The resulting curve for
< N∗

R > gave an exceedingly good fit to the expected curve (R2 = 0.9994). The one-
standard-deviation envelope is also shown (gray dashed curves).
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The motif we have examined in this section is commonly used within the
context of biological signaling. For example, a ligand (the signal) binding to a
monomeric protein receptor leads to the receptor response (the output)1 and
dissociation of the ligand-receptor complex is a reversible reaction. Another
common example is the reversible enzymatic phosphorylation of a chemical
species, catalyzed by a kinase and phosphatase that are far from saturation.
The latter condition assures that the enzymes respond linearly to the level of
substrate (approximated by the rate constants kf and kr in equation 3.5) and
the analysis we have presented above still holds.

1Typically, the response is a conformational change that relays the binding event to the
intracellular domain of the receptor.
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3.2 Continuous Switches
We continue our survey of motifs producing graded, or continuous, responses
by presenting two variations of the hyperbolic response motif that result in
ultrasensitivity (or sensitivity amplification): the response has a heightened
sensitivity to a narrow range of signal level. The characteristic shape of an
SR curve in these cases is sigmoidal.2 We refer to this response type as a
sigmoidal switch because, given a steep enough sigmoidal curve, a small change
in the signal significantly changes the level of the response element. Therefore,
for the majority of the possible signal levels, the response element is in either
a low or high copy number state that correspond to the switch being in the
OFF and ON state respectively. Moreover, the signal must remain constant to
maintain a certain level of response.

It is important to consider the mechanisms responsible for converting a hy-
perbolic response to a sigmoidal one. An easy way to accomplish this conversion
is to take the hyperbolic response motif and render it dependent on multiple
agents of S. That is, the rate of one direction in a reversible process is depen-
dent on two (or more) agents of S. Indeed, we show that this dependence results
in SR curve sigmoidicity; however, this way of implementing a dependence on
multiple agents of S is arguably unrealistic. For instance, if S is a kinase that
phosphorylates a suitable substrate at two distinct sites, then a more realistic
representation would be to model the phosphorylation events as separate pro-
cesses that can occur serially. We thus model the motif as a multi-step process
(essentially, a series of reversible reactions) where one S agent acts on each
step. Our simulations correctly predict that as the number of considered steps
increases, the SR curve becomes increasingly sigmoidal. This way of decreas-
ing the range of signal required to produce a large response differential is well
established in the study of molecular signal transduction systems (Ferrell, 1996).

We also explore another way of producing a sigmoidal response: 0 th order
ultrasensitivity. In the motifs described in the preceding paragraph, we assumed
that the kinetics of the reversible processes follow the law of mass action. Even
if one considered these processes to be enzymatic in nature, it was implicit
that they operated far from saturation so that the approximation of 1st or 2nd

order kinetics was reasonable. If, however, we explicitly treat these processes
as obeying Michaelis-Menten kinetics, then in the regime of activity saturation
(0th order kinetics) a sigmoidal system response is produced (Goldbeter and
Koshland, 1981). We analyze this case to find that the nonlinearity associated
with Michaelis-Menten kinetics results in a sigmoidal SR curve. Furthermore,
we show that the ABK simulation results are in sharp agreement with the
deterministic predictions.

In summary, we consider the same reversible process as in Figure 3.3, but the
following changes represent two distinct mechanisms (Ferrell, 1996) for achieving
ultrasensitivity: a) two or more S agents (instead of one) are needed for the

2The mechanisms we discuss here are distinct from cooperativity, which is an additional
way of producing a sigmoidal response.
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forward process A → R, and b) if the interconversion between A and R is
catalyzed by enzymes that are near saturation.

3.2.1 Multi-Step Ultrasensitivity
As we discussed in the hyperbolic response motif, the signal S promotes the
conversion of A to R. For instance, if we consider R to be the phosphorylated
version of A, then S is a kinase that catalyzes this reaction and we assume
that its activity is far from saturation. Only one S agent was needed for this
conversion in the hyperbolic case, which is akin to A being phosphorylated at
a single site. However, what if A is phosphorylated at two distinct sites? What
effect would this dual-site phosphorylation requirement have on the SR curve?
An initial attempt at answering these questions entails incorporating the need
for two agents of S in the conversion A → R in the deterministic treatment
of this system. This is equivalent to considering that two molecules of the
kinase S perform separate phosphorylation events at the two sites in A and R
is essentially A-bisphosphate.

First, we present a simple version of this motif to illustrate how this small
modification can produce a sigmoidal response. We refer to it as the “abbrevi-
ated 2-step sigmoidal response motif,” as shown below.

Figure 3.5 – Abbreviated 2-step sigmoidal response motif. kf and kr are the microscopic
rate constants for the forward and reverse reactions respectively. We assume that two agents
of S are needed to promote the forward transition A → R, and that the number of S agents
does not change.

The deterministic rate law of the forward process has a dependence on the
square of the signal population level and implicitly assumes that two S agents
act simultaneously (or, within the same time interval of size ∆t) on A.

As we have done previously, we assume that NS and NTOT = NA(t)+NR(t)
are constant. Given the dual requirement for S agents, the differential equation
for this motif is identical to 3.5, except for NS being replaced by N2

S ,

dNR
dt

= kfN
2
S (NTOT −NR) − krNR . (3.7)

Notice that the forward process is now theoretically 3rd order.3 Given that such
higher order reactions do not occur in chemical systems, we do not explicitly

3Equation 3.7 is the canonical form of the differential equation. Since the population of
S is a discrete quantity, the agent-based interpretation of this process yields the differential
equation

dNR

dt
= kfNS (NS − 1) (NA+R −NR) − krNR , (3.8)
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model the interactions between species A and S, and the forward process is
essentially treated as 1st order with a N2

S algebraic term in the transition prob-
ability expression (i.e., the KCF with respect to each A agent is ΩA = kfN

2
S).

We will present an arguably more realistic interpretation of the processes in this
motif in the next subsection (the full multi-step sigmoidal response motif).

Solving for the steady-state value N∗
R, we get

N∗
R = NTOTN

2
S

kr

kf
+N2

S

. (3.9)

This is the same result as in equation 3.6 except for the NS term being squared,
hence a sigmoidal SR curve is expected. Also note that the value of NS that

Follow this link to
see the Matlab code.

produces a half-maximal N∗
R is NS,50 =

√
kr/kf .

We show our results from a simulation of this motif with parameters kf =
0.0001 sec−1, kr = 0.10 sec−1, for an initial population NA,i = 25 and NR,i = 75.
We observed a sigmoidal SR curve4 in excellent agreement with the deterministic
prediction (Figure 3.6).

Full multi-step sigmoidal response motif

A more realistic description of this motif would consider the steps occurring
serially. We illustrate below (Figure 3.7a) how the motif can be modified to
examine the effect of explicitly including an intermediate species. For instance,
using our analogy of protein phosphorylation, the 2-step process can be rep-
resented with an additional intermediate, the mono-phosphorylated species B,
while R is the dual-site phosphorylated form of A. One agent of S (a kinase)
promotes each of the two forward processes. The reverse processes represent the
action of a phosphatase on either R or B. As we have previously mentioned, the
discussion that follows assumes that both the kinase and phosphatase activities
are far from saturation.
where we substituted NS (NS − 1) for N2

S in recognition of the fact that for the simultaneous
effect of two distinct S agents, there are NS − 1 available S agents after the first has been
chosen. We have simulated this motif using this agent-based interpretation and obtained
an excellent fit to the deterministic prediction based on equation 3.8 (R2 > 0.999). We do
not show these results here in the interest of brevity and will focus instead on the canonical
interpretation.

4We used the same parameters as in the hyperbolic response motif, except here kf =
0.0001 sec−1 instead of 0.01 sec−1. The reason for this difference is that in this case the
forward process is formally 3rd order (not 2nd) and one would expect the rate constant to be
of smaller value for a termolecular reaction event/process. Therefore, we deem it not entirely
meaningful to compare the hyperbolic vs. 2-step motifs with the same numerical value for kf .
We have, however, compared the two motifs (with kf = 0.01 sec−1) to satisfy our curiosity on
the mathematical consequence of replacing NS with N2

S in equation 3.5. Indeed, we observed
the conversion of hyperbolicity to sigmoidicity (SR curve not shown) with the simulation
results again agreeing with deterministic predictions.
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Figure 3.6 – Abbreviated 2-step sigmoidal response motif: SR curve. We simulated the
time evolution of the reaction scheme outlined in Figure 3.5. Simulation parameters: kinetic
constants kf = 0.0001 sec−1, kr = 0.10 sec−1, for initial populations NA,i = 25 and
NR,i = 75. We used the ABK algorithm to model this motif for a total simulated time of
100 sec using fixed time step increments of ∆t = 0.01 sec, and performed separate simulations
for integer values of S agents (NS = 0 − 80). We assumed that the population of S remains
constant in each simulation. We estimated N∗

R by averaging NR over the course of the last
50 sec of simulated time to account for the variation in population size due to stochasticity
once the steady state had been reached. We then repeated the simulation (n = 100) for each
value of NS to obtain the average and standard deviation of N∗

R. We plot here the average
steady-state population size of R, <N∗

R > vs. NS for each of the performed simulations
(red filled circles). The blue curve is the deterministic SR curve (equation 3.6). The one-
standard-deviation envelope is also shown (gray dashed curves). The fit between the ABK
and deterministic curves is excellent (R2 = 0.9999).

a) b)

Figure 3.7 – 2- and 3-step sigmoidal response motif. a) R is formed in a 2-step process,
with B being an intermediate. b) R is formed in a 3-step process, with species B and C
being intermediates. We assume that kf and kr are the microscopic rate constants for the
forward and reverse reactions in each of the steps, and that the number of S agents does
not change.

The discussion can be easily extended to 3- or multi-step processes (Fig-
ure 3.7b). In all cases, we make the assumption that all species cannot be
synthesized or degraded beyond the processes that are explicitly stated. There-

Follow this link to
see the Matlab code.

fore, the following condition is true for the 2-step motif: NTOT = NA(t) +
NB(t) +NR(t) = constant.

We present here the results of simulating the 2- and 3-step motifs and use
the same values of kf and kr for each of the forward and reverse processes as we
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did in the hyperbolic response motif (or 1-step process, Figure 3.3). This allows
us to directly compare these motifs and observe the effect of having additional
steps on the SR curve. The interested reader can state the differential equations
and derive the analytic expressions for the deterministic steady-state values of
the different species (we do not present this treatment here in the interest of
brevity). We show a summary of the deterministic and ABK simulation results
in Figure 3.8, where the transition from hyperbolicity to sigmoidicity is clearly
seen as the number of steps increases.
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Figure 3.8 – Multi-step sigmoidal response motif: SR curve comparison. We simulated
the time evolution of the reaction schemes outlined in Figure 3.7a,b. Simulation parameters:
kinetic constants kf = 0.01 sec−1 and kr = 0.10 sec−1 for each of the forward and reverse
processes, total simulated time of 100 sec with fixed time step increments of ∆t = 0.01 sec.
Initial populations: 2-step motif, NA,i = 25, NB,i = 75, NR,i = 0; 3-step motif, NA,i = 25,
NB,i = 75, NC,i = 0, NR,i = 0. We performed separate simulations for integer values of S
agents (NS = 0−40) and assumed that NS remains constant in each. N∗

R was estimated by
averaging over the course of the last 50 sec of simulated time. We repeated the simulation
(n = 100) for each value of NS to obtain the average and standard deviation of N∗

R. We
plot here <N∗

R> vs. NS (red filled circles for the 2-step process; blue crosses for the 3-step
process). There was excellent agreement between our simulation results and the deterministic
SR curves (R2 > 0.9998 for both the 2- and 3-step motifs). The one-standard-deviation
envelope (gray dashed curves) is only shown for the 2-step motif. The green and magenta
curves are the deterministic SR curves for the 2- and 3-step motifs respectively (marked
“DE” in the legend; curves obtained either analytically or numerically). The deterministic
hyperbolic response curve (or 1-step process; blue curve) is shown for reference. Note that
the ABK simulation results for the 1-step process are plotted in Figure 3.4c.
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The above presentation shows that a sigmoidal response can result from
considering multiple intermediate steps of an overall reversible process, where
each of the reactions can be kinetically described according to the law of mass
action. However, these results also hold for enzymatic processes as long as the
enzymes operate far from saturating conditions. We will now examine reversible
enzymatic processes where the full form of Michaelis-Menten kinetics is used and
no restriction on the degree of enzyme saturation is required.

3.2.2 Ultrasensitivity from a Cyclic Enzymatic Process
The reversible phosphorylation of protein molecules, acted on by kinase and
phosphatase enzymes and due to a second messenger molecule acting as the sig-
nal (e.g., cAMP), is an example of a common biological process that behaves as
a reversible switch (Bray, 1995). An analogous example of this motif’s use in sig-
nal transduction is the reversible interconversion of guanine nucleotide-binding
proteins (G proteins). In this case, G proteins are not modified covalently,
but their activities are instead modulated by their binding to either GDP or
GTP that leads to allosteric conformational transitions. GTPase-activating pro-
teins (GAPs) promote the hydrolysis of GTP to GDP, and guanine nucleotide-
releasing proteins (GNRPs) induce the release of GDP. The G protein then
binds to a new molecule of GTP and the cycle of conversions continues.

We consider a reversible enzymatic process where S promotes the production
of R from A (Figure 3.9a). Notice that this motif is schematically identical to the
motif that produced a hyperbolic response (Figure 3.3), except in this case we
assume that the interconversions between A and R are enzymatic and follow
Michaelis-Menten kinetics5 (we will use curved arrows to indicate processes
obeying such kinetics in this work).

a) b)

Figure 3.9 – Sigmoidal response motif. kf and kr are the microscopic rate constants
for the forward and reverse reactions respectively. Both reactions follow Michaelis-Menten
kinetics and therefore require the specification of the additional parameters KM,f and KM,r

(microscopic Michaelis constants for the forward and reverse reactions). a) ON switch: S
promotes (or catalyzes) the forward transition A → R, therefore the steady-state level of R
is directly proportional to S. b) OFF switch: S promotes (or catalyzes) the reverse transition
R → A, and the steady-state level of R is inversely proportional to S. In both cases, we
assume that the number of S agents does not change.

In addition to the rate constants kf and kr, we need to use two additional
parameters, the microscopic Michaelis constants KM,f and KM,r that represent
the number of agents of A and R that produce a half-maximal rate of the

5This motif is sometimes referred to in the literature as an enzymatic futile cycle.
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forward and reverse reactions, respectively. Figure 3.9 presents two motifs: a)
R increases when S levels go up (ON switch), and b) increasing S levels lead
to a decrease in R (OFF switch, a decreasing sigmoidal curve). Here, we will
present our findings only for the ON switch.6

We will further assume that species A and R are not produced or de-
graded through any unspecified processes, therefore NA(t) + NR(t) = NTOT .
Since NA(t) = NTOT − NR(t), the deterministic description of this motif is
1-dimensional, and the relevant differential equation is

dNR
dt

= kfNS (NTOT −NR)
KM,f + (NTOT −NR) − krNR

KM,r +NR
. (3.10)

It is evident from this equation and our knowledge of the Michaelis-Menten
equation that the maximal rate of the forward reaction is vmax,f = kfNS .

It is worthwhile to clarify how our presentation of this motif fits within
the context of biological processes. Based on our assumptions (namely, S is
regenerated or not consumed during the conversion A → R), S is an enzyme that
catalyzes the forward reaction and kf is the rate constant of the rate-determining
step in the enzyme’s mechanism (typically denoted as kcat; see section 2.11). A
very common form of biological signaling involves phosphorylation of substrates
or signaling (macro-)molecules, therefore S can be thought of as a kinase that
catalyzes the phosphorylation of A to produce species R (which can be the
biologically activated form of A, for instance). If the level of kinase can be
tuned according to an upstream signal (say, the level of a hormone or second
messenger), then in our simplified model S is a proxy for the signal whose levels
affect the overall rate of the forward reaction. Similarly for the reverse reaction,
vmax,r = kr, which suggests that either kr = kcat,rNP , where NP is the number
of enzyme (e.g., phosphatase) molecules catalyzing the reverse reaction or that
kr is in fact the rate-determining-step rate constant for the reverse reaction and
NP = 1. The latter case then assumes that there is always one phosphatase
molecule present and in both cases the level of phosphatase is not regulated by
any additional processes. Either case is consistent with the motif we present in
this subsection, which we try to keep as simple as possible and with the smallest
number of processes and molecular species.

To find the steady-state level of the population ofR, N∗
R, we set equation 3.10

equal to 0 to obtain

kfNS (NTOT −N∗
R) (KM,r +N∗

R) = krN
∗
R [KM,f + (NTOT −N∗

R)] , (3.11)

which can be rearranged to reveal a quadratic function of N∗
R. We will not

present the analytic solution to this equation here (the interested reader can
apply the quadratic formula and sort through all of the constants). The solution
for N∗

R is known as the Goldbeter-Koshland function (Goldbeter and Koshland,
1981). In this work, we computed the deterministic N∗

R values numerically.

Follow this link to
see the Matlab code.

6Although not shown here, we have confirmed that our simulations match the deterministic
predictions for the case of the OFF switch.
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We present an example of this motif with kinetic constants kf = 0.05 sec−1,
kr = 1 sec−1, and Michaelis constantsKM,f = 30, KM,r = 5. Figure 3.10a shows
the rate-balance plot indicating how the rates of synthesis and degradation ofNR
vary as a function of NR. These rates are given by the first and second terms in
the differential equation 3.10 respectively. Since both reactions follow Michaelis-
Menten kinetics, their rate curves are hyperbolic and their intersections are the
steady-state values N∗

R. It is easy to see that in the cases where the synthesis
curve (green) intersects the degradation curve (magenta) when it plateaus, a
small change in NS produces an disproportionately larger increase in N∗

R (for
instance, when NS = 20 → 35, N∗

R ≈ 15 → 65, a more than 3-fold increase
in the response compared to that of the signal). For this reason, this type of
signal-response mechanism has been termed 0 th order ultrasensitivity (LaPorte
and Koshland, 1983) to reflect the fact that when opposing processes are near
saturation (the hyperbolic curve’s plateau is the 0th order regime) the response
level is particularly sensitive to an increase (or decrease) in the signal.

We simulated the time evolution of the A and R populations using the ABK
algorithm for the abbreviated form of Michaelis-Menten transition probabili-
ties. We remind the reader that using the abbreviated treatment of Michaelis-
Menten reactions (subsection 2.11.2) does not take into account the presence
of the enzyme-substrate complex as a distinct species, and is therefore a good
approximation only for an enzyme population of small size relative to the sub-
strate’s.7 In the context of our presentation of this motif, this approximation is
valid for small NS values. A more careful approach would use the full treatment
of Michaelis-Menten kinetics for higher values of NS . Nevertheless, we proceed
with the use of the abbreviated form of transition probabilities for this idealized
motif.

We considered initial population sizes NA,i = 50 and NR,i = 50, and simu-
late this system for a total time of 1000 sec using fixed time step increments of
∆t = 0.02 sec. We performed separate simulations for values of NS = 1 − 60,
each of which had approached the steady-state values by at most t = 500 sec.
We averaged NR(t) during the last 400 sec of each simulation to obtain an esti-
mate for N∗

R. The resulting SR curve, shown in Figure 3.10b, shows excellent
agreement with the deterministic prediction of a sigmoidal response (obtained
by numerical solution for N∗

R in equation 3.11). We also repeated the simulation
(n = 100) for each value of NS and obtained <N∗

R > that again agrees with
the theoretical SR curve (R2 = 0.9991). We do not show this plot because be-
cause the agreement to theory is nearly perfect and the one-standard-deviation
envelope is so small that it is hardly visually discernible (σ ∼ o(1/10)).

Some notes on the steepness of the sigmoidal SR curve

We will now make some remarks that are useful in assessing systems that show
reversible switching behavior, as well as for designing switches with desired prop-
erties. We begin by showing the deterministic maximum slope of the sigmoidal

7For a brief discussion on how comparable levels of enzyme and substrate affect the motif’s
ultrasensitivity and maximal response, see Ferrell and Ha (2014).

98



0 20 40 60 80 100

0

0.5

1.0

1.5

2.0

2.5

a)

0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

80

90

100

b)

Figure 3.10 – Sigmoidal response motif: rate-balance plot and SR curve. We simulated the
time evolution of the motif outlined in Figure 3.9. Simulation parameters: kinetic constants
kf = 0.05 sec−1 and kr = 1 sec−1; Michaelis constants KM,f = 30 and KM,r = 5; initial
population sizes NA,i = 50 and NR,i = 50. a) Rate-balance plot showing the rates of
synthesis (green) and degradation (magenta) of NR as a function of NR. Since synthesis
also depends on NS , we have plotted the synthesis curves for values of NS = 1 − 60 (shown
here in multiples of 5; selected NS values are highlighted in green text). The intersections
(marked by the hollow black circles) represent the steady-state values N∗

R. b) We used the
ABK algorithm to model this motif for a total simulated time of 1000 sec using fixed time step
increments of ∆t = 0.02 sec. We performed separate simulations for distinct integer values
of S agents (NS = 1 − 60) promoting the production of R, and assumed that NS remains
constant. We plot here N∗

R (averaged over the course of the last 400 sec of simulated time)
vs. NS for each of the performed simulations (red filled circles). The blue curve (marked
“DE” in the legend) is the deterministic signal-response curve (equation 3.6). The agreement
between the simulations and the theoretical curve is excellent (R2 = 0.9899).
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SR curve occurring at the point (NS50 , NT OT/2), where NS50 corresponds to the
population size of S that produces a half-maximal steady-state response. The
steeper the curve is at this point, the more switch-like the response is.8

Substituting the coordinates of this point into equation 3.11 allows us to
solve for NS50 , obtaining

NS50 = kr (NTOT + 2KM,f )
kf (NTOT + 2KM,r)

. (3.12)

We then implicitly differentiate the steady-state condition in equation 3.11 to
obtain dN∗

R

dNS
. We subsequently substitute our result for NS50 (equation 3.12)

and N∗
R = NT OT/2 into dN∗

R

dNS
to derive an expression for the maximal slope of the

sigmoidal curve as a function of the system’s parameters.

max dN∗
R

dNS
= 1

4

(
kf
kr

)
NTOT (NTOT + 2KM,r)2

KM,f (NTOT + 2KM,r) +KM,r (NTOT + 2KM,f )
(3.13)

Increasing kf and/or decreasing kr increases the curve’s steepness, as does
the size of the combined population, NTOT .9 This observation suggests that,
for a given set of kinetic parameters, smaller population sizes result in less-
pronounced switching and require higher levels of NS50 when KM,f > KM,r.
That is, a bigger S population is needed for switching to occur. Figure 3.11 sum-
marizes these results. We are unaware of any experimental data that address
this deterministic prediction. In future work, we plan on performing stochastic
simulations to further explore the implications of the above observations on the
switching behavior of systems with small population sizes.

8There are other measures of a sigmoidal curve’s steepness. Goldbeter and Koshland (1981)
used the macroscopic concentration ratio EC90 : EC10, where EC stands for effector (or
signal) concentration needed to produce a 90% and 10% response respectively. In this work,
the microscopic equivalent is NS90 : NS10 . This ratio is 81 for a hyperbolic curve and less than
that value for a sigmoidal curve. It is related to the Hill coefficient by NS90/NS10 = 811/nH .

9Notice that the expression is overall a quadratic function of NT OT .
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Figure 3.11 – Sigmoidal response motif: NS50 and maximum slope of SR curve. We used
the parameters kf = 0.05 sec−1, kr = 1 sec−1, KM,f = 30, KM,r = 5, and equations 3.12
and 3.13 to show the dependence of NS50 (blue curve, left vertical axis) and max dN∗

R/dNS

(red curve, right vertical axis) on the total population NT OT . The blue curve is typical of
the case where KM,f > KM,r: it monotonically decreases and asymptotically approaches
kr
kf

(which has a value of 20 for the parameters we used) for large NT OT . NS50 can only

stay constant if KM,f = KM,r (blue dashed line) and has a value of kr
kf

. For the case when

KM,f < KM,r, NS50 starts lower than kr
kf

and approaches the same horizontal asymptote
(curve not shown). Finally, the red curve has a parabolic form for all parameter values.
Therefore, the maximal slope of the SR curve increases monotonically as NT OT increases.

A note on nomenclature. We have so far examined the linear, hyperbolic,
and sigmoidal response motifs which give rise to simple input-output rela-
tionships. In most cases, the motifs were 1-dimensional (i.e., that can be
fully characterized by the time evolution of one species) and with only one
unique steady-state value for a given set of parameters. As we consider
motifs that result in more complex behavior, we change our terminology
to reflect the fact that not all steady states act as “attractors,” as has
been the case thus far. We will refer to the population sizes that make the
differential equations describing the system equal to zero as fixed points,
whose stability can be determined using methods in nonlinear dynamics
(see Appendix C).
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3.3 Discontinuous Switches
The sigmoidal switches we described in the preceding section produce a graded
response. We continue with a discussion of discontinuous switches, where a small
change in the signal can result in large and abrupt changes in the steady-state
level of the response element. First, we establish the basis for this behavior by
analyzing the dynamics of a motif with two mutually inhibitory species in the
absence of a signal. We show that this leads to bistability (switch-like behavior)
and that the phase plane or state space is split into two basins of attraction.
In a deterministic sense, one of two species dominates the other depending on
which basin of attraction the initial condition lies in. Since there is no signal
to potentially reset the state of the deterministic system, one species dominates
indefinitely. A typical behavior of these motifs is that the state of the switch
depends on the history of previous states. Namely, in the case of an irreversible
(or one-way) switch, as the level of signal surpasses a threshold value, the system
switches to its other attractor and is not capable of switching back even when
the signal decreases to values below the threshold. This phenomenon of a system
maintaining memory of past states after any transient signals have decayed is
termed hysteresis, and its usefulness to biological systems10 is that it favors the
robust maintenance of a switch’s state.

However, the stochastic approach provides insight into the role of noise when
considering such systems. In the following sections, we will describe the presence
of spontaneous stochastic switching events in ABK simulations, where a system
can “flip” from one attractor state to another as a result of fluctuations inherent
to the system’s processes (i.e., noise). We specifically explore how stochastic
fluctuations in the species’ population sizes of the mutual inhibition switch
motif probabilistically affect the state of the switch. We show how an ensemble
of ABK stochastic simulation runs can be used to calculate the probability of
the switch being in one state or the other at a given time point. Therefore, the
deterministic prediction of an outcome based on the initial population sizes can
be replaced with a probabilistic one.

We then continue our treatment of bistable switches by extending the case
of mutual inhibition through adding the effect of a signal species, S, that can
relieve one of the inhibitory interactions. We see that this scenario also leads to
bistability and again observe the phenomenon of hysteresis. We present through
our application of the ABK method to this system how stochasticity affects the
transition from one switch state to the other. Furthermore, we show how a small
change in the parameters of the same motif can transform it into a hysteretic
reversible (or two-way) switch: the system transitions to a new attractor state
at a critical level of S, whereas it switches to the original attractor at a lower S
value than the one required for the initial transition.

We complete our investigations on switches by presenting the case of mu-
tual activation (or positive feedback) where two species promote each other’s
synthesis. This motif is also capable of exhibiting switch-like behavior.

10Hysteresis has also been characterized in many physical systems (e.g., magnets).
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Biological significance

In this section, we apply the ABK method to probe the role of stochasticity in
bistable systems and illustrate its potential in contributing to the study of a
multitude of phenomena spanning many scientific fields and disciplines, some of
which we briefly review below.

The phenomenon of stochastic switching has been implicated in different
biological contexts, a fact that underscores its importance in population dy-
namics (Tsimring, 2014; Eldar and Elowitz, 2010). An early investigation on
this phenomenon was performed by Arkin et al. (1998) who showed how the lyt-
ic/lysogenic fate of an E. coli cell infected by phage λ depends on a stochastic
switch. In addition, some bacterial gene networks that control metabolism, the
stress response, and pathogenicity have been observed to use stochastic switch-
ing to generate phenotypically heterogeneous cellular populations, a strategy
known as bet hedging (for reviews of these observations, see Raj and van Oude-
naarden, 2008; Eldar and Elowitz, 2010). In other fields (such as ecology and
paleoclimatology), the study of a system’s transition to an alternate attractor
state and early warning signals that could predict such transitions is an active
area of research (Scheffer et al., 2012; 2009).

Of particular medical importance is the observation of subpopulations of
persister cells that are drug-tolerant in bacterial (Balaban et al., 2004) and can-
cer cell (Sharma et al., 2010) populations. These are all instructive examples
of how organisms have evolved to take advantage of noise, a seemingly coun-
terintuitive proposal given that noise is considered an impediment to reliable
control in a system’s decision-making process. However, the existence of distinct
subpopulations of a species generated through spontaneous stochastic switching
events has been theoretically predicted to be the preferred strategy under some
conditions for adapting to fluctuating environmental stimuli and stresses (Kus-
sell and Leibler, 2005), thus conferring a fitness advantage to the population as
a whole.

3.3.1 The Mutual Inhibition Switch
We begin by analyzing the dynamics of the mutual inhibition between two
species, A and R, and will, for the moment, ignore the presence of an extrinsic
signal S. Figure 3.12 shows the motif that we will refer to as the mutual in-
hibition switch. The 0th order basal rates of synthesis of species A and R are
parameterized by the rate constants ka and kr respectively, and the 1st order
degradation rate constants are κa and κr. Moreover, the two species inhibit
each other’s synthesis, with half-maximal inhibitory activity of each effector
defined by the microscopic parameters K50,A and K50,R. Finally, we use the
Hill coefficients nH,A and nH,R to denote the cooperativity of inhibition due to
species A and R respectively.
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Figure 3.12 – Mutual inhibition switch motif. ka and kr are the microscopic 0th order rate
constants for the synthesis of A and R, and κa and κr are the microscopic 1st order rate
constants for the degradation of A and R respectively. A inhibits the synthesis of R with
half-maximal inhibition occurring with K50,A agents/molecules of A, and Hill coefficient
nH,A. Similarly, the inhibition of A by R is parameterized by K50,R and nH,R.

We can describe this motif deterministically by the following set of differen-
tial equations,

dNA
dt

= ka
K
nH,R

50,R + αrN
nH,R

R

K
nH,R

50,R +N
nH,R

R

− κaNA (3.14)

dNR
dt

= kr
K
nH,A

50,A + αaN
nH,A

A

K
nH,A

50,A +N
nH,A

A

− κrNR , (3.15)

where we have used the general form of the RSF (equation 2.148). These equa-
tions can be used to analyze the dynamics of any regulatory effect between
species A and R because the parameter α denotes the degree of activation/re-
pression. In this example, we will assume mutual inhibition and set the param-
eters αa = αr = 0, signifying complete mutual repression of the two species.
To further simplify our analysis, we will assume that the cooperativity and
strength of mutual inhibition between A and R are the same. In summary, our
assumptions are:

αa = αr = 0
K50,A = K50,R ≡ K50 (3.16)
nH,A = nH,R ≡ nH .

Accordingly, the differential equations can be rewritten in simplified form.
dNA
dt

= ka
KnH

50
KnH

50 +NnH

R

− κaNA = ka
1

1 +
(
NR

K50

)nH
− κaNA (3.17)

dNR
dt

= kr
KnH

50
KnH

50 +NnH

A

− κrNR = kr
1

1 +
(
NA

K50

)nH
− κrNR (3.18)

Despite these simplifications, finding the fixed points is algebraically challenging
in the general case,11 but can be determined numerically.

11For an even more simplified version of this system of differential equations amenable to
easy algebraic analysis, see Kaplan and Glass, 1995, pp. 235-236.
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We consider the following values for the parameters of the mutual inhibition
switch motif: ka = kr = 1.0 sec−1, κa = κr = 0.01 sec−1, and K50 = 50
agents/molecules of A or R. We used the Symbolic Math toolbox in Matlab to
numerically solve for the fixed points and assess their stability (see Appendix C).
We show in Figure 3.13a the bifurcation diagram for the fixed points N∗

R as a
function of the Hill coefficient nH . The blue curve corresponds to the stable fixed
points (we will also refer to them as attractors or sinks), while the red dashed
curve signifies unstable fixed points. The system is monostable for nH ≤ 2 with
N∗
R = 50, and becomes bistable for nH > 2, where N∗

R = 50 now becomes
unstable. Thus, a transcritical pitchfork bifurcation occurs at nH = 2.

To further understand the dynamics when nH > 2, we show the phase
plane plot of this system for a particular value of the Hill coefficient, nH = 3
(Figure 3.13b), where we plot the nullclines for NA (red curve for which dNA/dt =
0) and NR (blue curve for which dNR/dt = 0). The intersections between the
nullclines are the fixed points whose stability can be easily assessed by visual
inspection of the direction field (green arrows). The plot reveals two stable fixed
points on the upper left and lower right corners of the phase plane (blue-filled
circles), while a third fixed point (red-filled circle) exists at (50, 50). Notice that
trajectories are attracted to the latter fixed point along the diagonal, but are
repelled from it along the orthogonal direction. Such fixed points are known as
saddles. Finally, we show the boundary between the two basins of attraction,
known as the separatrix (dashed orange line along the diagonal). That is, initial
population sizes above the separatrix tend towards the stable fixed point on the
upper left corner of the phase plane, while trajectories move toward the other
stable fixed point when below the separatrix. We shall heretofore refer to the
two stable fixed points on the upper left and lower right corners of the state
space as “sink 1” and “sink 2” respectively.

A note on nomenclature. The term phase plane is reserved for use in sys-
tems described by continuous variables. The solutions to the deterministic
equations assume continuity and therefore the direction field can be the-
oretically calculated at every point in the plane. On the other hand, our
agent-based simulations can only produce trajectories that “jump” from
one discrete state to another. Therefore, we shall refer to this plot as the
state space of the discrete dynamical system when overlaying trajectories
obtained through ABK simulations.

The role of stochasticity in determining the switch state

Follow this link to
see the Matlab code.

We now examine the results of implementing the ABK algorithm to simulate
the time evolution of the populations NA(t) and NR(t) given the kinetic and
inhibition parameter values listed in Figure 3.13 and Hill coefficient nH = 3.
We simulated the system for a total time of 2000 sec with fixed time step incre-
ments of ∆t = 0.02 sec. In addition, we considered the initial population sizes
to be NA,i = NR,i = 10. We show the results of one such simulation plotted
parametrically with respect to time on the state space in Figure 3.14a. Notice
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Figure 3.13 – Mutual inhibition switch motif: N∗
R bifurcation diagram with respect to

nH and phase plane. We consider the mutual inhibition switch motif with parameters
ka = kr = 1.0 sec−1, κa = κr = 0.01 sec−1, and K50 = 50 agents/molecules of A or R. a)
We varied the parameter nH and used Matlab to numerically solve for the fixed points in the
system of differential equations 3.17 and 3.18. We then assessed their stability using Linear
Stability Analysis (see Appendix C). A transcritical pitchfork bifurcation occurs at nH = 2
and the system becomes bistable for nH > 2. Blue solid curve: stable fixed points; red
dashed curve: unstable (or saddle) fixed points. b) Phase plane of this system calculated for
nH = 3. We show the nullclines (solid curves) and their intersections (blue-filled circles for
stable fixed points and red-filled circle for the saddle point; legend key: FP, fixed point). At
each ordered pair (NA, NR) we evaluated the velocity vector (dNA/dt, dNR/dt) to produce
the direction field (green arrows; lighter shades of green correspond to greater amplitude of
the velocity vectors). The separatrix is also shown (orange dashed line).
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that this initial condition lies on the separatrix, and therefore the deterministic
trajectory (black crosses) strictly follows a linear path to the saddle (50, 50), as
would be expected based on the direction field shown in Figure 3.13b. Since the
deterministic trajectory stays along the separatrix, it has no chance to “curve”
one way or the other toward the stable fixed points, and settles instead on the
saddle (i.e., the separatrix is the stable manifold of the saddle). However, in ac-
cordance with our expectation of how real systems behave, the ABK simulation
shows that stochastic fluctuations will cause the trajectory to settle in one of
the two basins of attraction. The sample trajectory shown in Figure 3.14a starts
at (10, 10) at t = 0 sec, and ends at (96, 15) at t = 2000 sec, which is in the
neighborhood of the numerically-evaluated stable fixed point at (98.80, 11.47),
or sink 2.

We repeated the simulation (n = 500) to compute and plot the average pop-
ulation trajectories (Figure 3.14b). We observed that the populations converged
on the neighborhood of either sink with equal likelihood, as would be expected
when stochasticity determines the switch state given that the initial condition
lies on neither basin of attraction.

We show the results of one additional case that highlights the dependence
of this motif’s behavior on stochasticity: the values of the kinetic and inhi-
bition parameters are the same as above except the initial population sizes
are NA,i = 10, NR,i = 11. Since this initial condition lies above the sepa-
ratrix, the deterministic solution converges on sink 1, the stable fixed point
(NA = 11.47, NR = 98.80). Figure 3.15 shows a sample ABK trajectory where
the populations are observed to converge on sink 2 (instead of sink 1) with a
frequency of 50.2% (n = 1000). We do not show the average trajectories in this
case because they are nearly identical to those in the preceding figure (3.14b).

It is evident that for initial population sizes close to the nullcline, the proba-
bility of going to one sink versus the other is approximately 50%, as expected for
a stochastic process with no initial bias toward either sink. We also performed
simulations for other initial conditions and observed the probability of conver-
gence on either sink change accordingly. For instance, an initial condition in the
lower basin of attraction, (NA,i = 75, NR,i = 50), converges on sink 2 with a fre-
quency of 94.4% (n = 500; total simulated time of 2000 sec for each run), while
random fluctuations (noise) of sufficient amplitude divert the remaining 5.6%
of the trajectories to sink 1’s state-space neighborhood. In another example,
starting from an initial condition very close to sink 1 (NA,i = 10, NR,i = 90),
the system converged to sink 2 (N∗

A = 98.8, N∗
R = 11.47) only once in 4000

simulation runs (total simulated time of 2000 sec for each run). It is noteworthy
that even when starting so close to a sink, a trajectory converging on the other
sink is still possible.12

12If we had greater computational resources, we would perform simulations for a range
of integer values of population sizes representing the entirety of the state space shown in
the preceding figures. We would then be able to obtain estimates of the scalar-valued func-
tion P (NA,i, NR,i), denoting the probability of convergence on either sink within a specified
amount of simulated time.
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Figure 3.14 – Mutual inhibition switch motif: stochastic time trajectories in state space
(case 1). We used the ABK algorithm to simulate the time evolution of the mutual inhibition
switch motif. Model parameters: ka = kr = 1.0 sec−1, κa = κr = 0.01 sec−1, K50 = 50,
nH = 3, with initial populations sizes NA,i = NR,i = 10. We simulated this system for
2000 sec with fixed time step increments of ∆t = 0.02 sec. We refer to the two stable fixed
points as sink 1 and sink 2 in the figure. a) Sample run of the ABK simulation where
the time trajectory of the populations NA and NR is plotted parametrically on the state
space (red path). We label the beginning and end of the ABK time trajectory on the plot
to aid its visualization (although it is impossible to fully convey the time dependence of
the trajectory on a static image such as this). The solution to the differential equation
given these initial population sizes is also shown (black crosses); the deterministic time
trajectory ends at the saddle (50, 50) because it “flows” along its stable manifold. In this
simulation run, the populations converge to sink 2, the stable fixed point with coordinates
(NA = 98.80, NR = 11.47), and fluctuate stochastically in its vicinity. b) We repeated
the simulation of this motif 500 times to observe the frequency with which the populations
approach the two stable fixed points. We then classified the time trajectories according to
which sink they approached and then averaged them (magenta and cyan curves for sinks 1 and
2, respectively). We have also plotted the one-standard-deviation envelopes for each average
trajectory (gray dashed curves). The system goes to sink 1 (NA = 11.47, NR = 98.80)
49.2% of the time and to sink 2 (NA = 98.80, NR = 11.47) 50.8%.
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Figure 3.15 – Mutual inhibition switch motif: stochastic time trajectories in state space
(case 2). We used the same parameter values as indicated in Figure 3.14, except the initial
population sizes are NA,i = 10, NR,i = 11. a) Time course of a sample run where the ABK
trajectories are shown along with the deterministic solutions. b) Same sample simulation as
in a, but plotted parametrically on the state space. Notice that the deterministic solution
converges on sink 1 (upper left corner), while the ABK trajectory takes a brief excursion
in the upper basin of attraction before ultimately ending up in the neighborhood of sink 2
(lower right corner). The frequency of convergence on sink 2 was 50.2% (n = 1000).
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We tested whether simulating this motif for a sufficiently long period of time
leads to a spontaneous reversal in the switch state (i.e., a switch “flip”). By
spontaneous, we mean that a reversal occurs as a result of the intrinsic noise
that is characteristic of the motif’s processes, rather than an external signal
influencing the interspecies inhibition or some other aspect of the system (we
will investigate the latter case in the next subsection). We ran a simulation of the
mutual inhibition motif with the same parameters as above for a total simulated
time of 5 × 105 sec. We used the initial condition of (NA,i = 30, NR,i = 100),
which is a point in state space within sink 1’s basin of attraction. The system
is therefore expected to settle in the vicinity of sink 1. Indeed, the ABK-
simulated sample trajectory quickly converged on the vicinity of sink 1, however
we subsequently observed two reversals of the switch state in the time window
of 2.0−3.5×105 sec (shown in Figure 3.16). If we take sink 1 and 2 to represent
the switch in the ON (high NR) and OFF (low NR) state respectively, then the
first “flip” turns the system from the ON to the OFF state, while the second
reversal occurrence restores the ON state. We refer to each instance of this
behavior as a noise-induced switch state reversal.

We have thus shown that in the absence of a signal, convergence on either
sink occurs with a finite probability that depends on the initial population
sizes. Reaching either sink should not be considered an irreversible process, as
our simulations have highlighted the importance of stochastic fluctuations in
the spontaneous reversal from one switch state to the other. These random
fluctuations, or noise, allow the system to sample a variety of population sizes
in state space and can lead the trajectory to cross the separatrix into either
basin of attraction. Even if the system is in the immediate neighborhood of
a sink, there is a small but finite probability of a noise-induced excursion of
sufficient magnitude through state space to the adjacent basin of attraction,
possibly leading to a switch state reversal.

The state space can alternatively be characterized by a potential energy function whose
minima are at the sink locations, while the separatrix is a potential energy barrier. In this
sense, noise can provide the requisite amount of “activation energy” in order for the system
to cross that barrier.
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Figure 3.16 – Mutual inhibition switch motif: noise-induced switch state reversal. We
used the ABK method to simulate the mutual inhibition switch motif with the same kinetic
and inhibition parameters as in Figures 3.14 and 3.15. In this case, the initial populations
sizes are in sink 1’s basin of attraction: NA,i = 30 and NR,i = 100. We recorded the
population time trajectories of species A and R for a total of 5 × 105 sec of simulated time.
The system quickly settles in the state-space neighborhood of sink 1, but two spontaneous
switch state reversals occur within the time window shown in the figure. We refer to sink 1
and 2 as the ON (high NR) and OFF (low NR) switch state respectively. We also show the
deterministic trajectories (dashed lines) that converge on sink 1 (ON state) given the initial
condition.
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3.3.2 The Irreversible Mutual Inhibition Switch
We now consider an extension of the mutual inhibition switch motif by including
the presence of an extrinsic signal S that inhibits the inhibition of the synthesis
of R by A (Figure 3.17). Therefore, S effectively turns the switch ON, which
we take to mean a state with a large population of R. This motif has been
constructed as a synthetic switch in E. coli (Gardner et al., 2000), where A and
R (in our nomenclature) are repressors which inhibit each other’s promoter and
species S is the inducer IPTG.

Figure 3.17 – Irreversible (one-way) mutual inhibition switch motif. All reactions and
parameters are the same as listed for the mutual inhibition switch motif (Figure 3.12),
except for the additional presence of the signal S that inhibits the inhibition of the synthesis
of R by A. The parameter K50,S represents the number of agents/molecules of S needed
for half-maximal inhibition, and the Hill coefficient nH,S captures the cooperativity of this
additional regulatory interaction. We assume that the population size of S remains constant.

Since the signal species S mediates a regulatory interaction, specification
of the following additional parameters is dictated by the RSF: the degree of
activation/repression αs, K50,S is the number of S molecules that produce a
half-maximal regulatory effect, and nH,S is the Hill coefficient. Given these
parameters, we first state the general form of the system of differential equations
for this motif.

dNA
dt

= ka
K
nH,R

50,R + αrN
nH,R

R

K
nH,R

50,R +N
nH,R

R

− κaNA

dNR
dt

= kr

K
nH,A

50,A + αa

(
NA

K
nH,S
50,S

+αsN
nH,S
S

K
nH,S
50,S

+N
nH,S
S

)nH,A

K
nH,A

50,A +
(
NA

K
nH,S
50,S

+αsN
nH,S
S

K
nH,S
50,S

+N
nH,S
S

)nH,A
− κrNR (3.19)

The only difference between this system of equations and the one presented
in the last subsection is the term corresponding to NA in the RSF for the
regulation of R. Here, NA has been multiplied by the RSF describing the
additional regulatory effect by S (compare equation 3.19 with 3.15). Tuning
the parameters αS , αr, and αa thus allows us to study any combination of
activation and inhibition that may exist between the species in this motif.
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In this example, we assume the same kinetic parameters as in the last sub-
section for the mutual inhibition between A and R. In addition, S completely
represses the inhibition of the synthesis of R by A (αs = 0). In summary, our
assumptions for the parameter values are:

αa = αr = αs = 0
K50,A = K50,R ≡ K50 (3.20)
nH,A = nH,R ≡ nH .

The differential equations can be rewritten in simplified form as

dNA
dt

= ka
KnH

50
KnH

50 +NnH

R

− κaNA

dNR
dt

= kr
KnH

50

KnH
50 +

(
NA

K
nH,S
50,S

K
nH,S
50,S

+N
nH,S
S

)nH
− κrNR , (3.21)

or, equivalently

dNA
dt

= ka
1

1 +
(
NR

K50

)nH
− κaNA

dNR
dt

= kr
1

1 +
(
NA

K50

K
nH,S
50,S

K
nH,S
50,S

+N
nH,S
S

)nH
− κrNR . (3.22)

Finally, for the sake of simplicity we consider the inhibition by S to be non-
cooperative (nH,S = 1) and take K50,S to have the same value as the corre-
sponding parameter for the other species (i.e., K50,S = K50; the strength of in-
hibition is the same). All other parameters remain the same: ka = kr = 1 sec−1,
κa = κr = 0.01 sec−1, K50 = 50, nH = 3.

Given these parameters, we analyze the deterministic behavior of this motif
by numerically solving the above differential equations. First, recall that the
phase plane for NS = 0 is equivalent to that shown in Figure 3.13b, with the
unstable fixed point, or saddle, at (50, 50) and the system is bistable. We then
plot the phase plane in Figure 3.18a,b for two different nonzero values of NS
and observe that as NS increases the saddle and stable fixed point on the lower
right (NA is large and NR is small; sink 2) approach one another, eventually
collide, and finally annihilate each other when NS = 12.13 The disappearance
of those fixed points makes the system monostable, with sink 1 featuring a large
R population remaining as the only attractor. In summary then, for NS > 12
the populations converge on sink 1 and the switch is irreversibly in the ON state
(high N∗

R).
These considerations lead to the theoretical SR curve shown in Figure 3.18c.

The upper stable branch corresponding to high N∗
R is disconnected from the

13This is a classic case of a saddle-node bifurcation where two fixed points collide and
disappear.
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lower part in the NS range of bistability (0 ≤ NS ≤ 12). This means that a
system in the region of high N∗

R (ON state; sink 1) has no way of switching to
high N∗

A (OFF state; sink 2). Even if NS decreased, the system would remain
in the ON state. This SR curve and resulting system behavior is the hallmark
of an irreversible (or one-way) switch.

Results of ABK simulations

Follow this link to
see the Matlab code.

We used the ABK algorithm to simulate the time evolution of this motif with
two sets of initial population sizes: NA,i = 100, NR,i = 0 (which represent the
switch effectively being in the OFF state), and NA,i = 10, NR,i = 10. We
performed a separate simulation for each integer value of NS in the range [0, 20]
for a total simulated time of 5000 sec.14 We estimated the steady-state levels N∗

A

and N∗
R by averaging the population sizes over the last 1000 sec of the simulation

(see relevant Matlab code in Appendix D on page 279). We show the resulting
SR curve from the ABK simulations superimposed on the deterministic curve
in Figure 3.19a. The open red circles or cyan cross markers and their error bars
represent <N∗

R> ± 1 SDev (n = 100) for each of the two initial conditions. It is
important to clarify that the <N∗

R> values in between the two stable branches
(high and low values of N∗

R; blue curves of the deterministic SR curve) do not
mean that the populations reached some intermediate size, as the dynamics of
the system in the bistable region dictate that the population trajectories reach
either of the two sinks. The average is taken over an ensemble of simulation runs
with individual switch outcomes being either in the ON or OFF state.15 Rather,
these values reflect the fact that due to the stochastic nature of the processes,
sink 1 (ON state; high N∗

R) can be reached with increasing probability as NS
increases. It is evident in the plot that for 3 ≤ NS ≲ 14, N∗

R can be found in
either sink with a finite probability determined by the magnitude of NS . For
instance, when NS = 9, <N∗

R>≈ 60±40, which is at the halfway point between
the N∗

R values corresponding to the two sinks and the error bars span the full
range between them. A reasonable interpretation of this is that simulations of
the system end up in the ON state approximately 50% of the time. Indeed, in

14We increased the total simulation simulation time from 2000 sec (see preceding subsection)
to 5000 sec because when fixed points collide and annihilate, they create a “bottleneck” where
the trajectory flows very slowly through that region (some authors call this a “ghost node” or
critical slowing down). The increased amount of simulated time ensures that the system has
enough time to reach a stable fixed point.

15Imagine for a moment that a molecular realization of this motif occurs inside of a biological
cell. Then, an experimenter taking a single measurement of N∗

R from an ensemble of cells (for
instance, by coupling the motif’s response element to a fluorescent marker) would observe
a smooth SR curve transition from one switch state to the other. In actuality, however,
each measurement is the average of distinct subsets of cells that are in the ON or OFF
state. This agrees with the observation of a bimodal distribution by Gardner et al. (2000, see
Figure 5) when they experimentally constructed and tested this motif in bacterial cells. Other
researchers have documented this effect when studying natural systems (e.g., see Ferrell and
Machleder, 1998, for a characterization of the all-or-none cell fate switching in Xenopus leavis
oocytes).
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Figure 3.18 – Irreversible mutual inhibition switch motif: phase plane and SR curve. All
parameters are the same as indicated in Figure 3.13b (which is the phase plane for this motif
with NS = 0), with the additional parameters αs = 0, K50,S = 50 and nH,S = 1. a) Phase
plane for NS = 10. Note that the saddle and stable fixed point on the lower right “move”
toward each other as NS increases. b) Phase plane for NS = 20. The saddle and stable
fixed point on the lower right of plot a have “collided” and disappeared. The system has now
become monostable. c) SR curve (or, equivalently stated, bifurcation diagram with respect
to NS) showing the range of NS values, 0 ≤ NS ≤ 12, for which the system is bistable.
The red dashed curve corresponds to the saddle. Notice that the upper stable branch exists
for all values of NS and is disconnected from the lower unstable/stable region, therefore a
system “caught” in the high N∗

R regime is unable to return to the lower one. This is the
hallmark of an irreversible switch.
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our simulations the system reached the ON state with a frequency of 52% when
NS = 9.

We plot the percentage of simulation runs that the system reached the ON
state for each sampled value of NS in Figure 3.19b. It is noteworthy that
starting from the switch in the OFF state, the transition to ON starts earlier
than predicted by the deterministic analysis, which predicts a sudden jump at
NS = 12 from OFF to ON. In the stochastic case, we see that the switch turns
to the ON state in a substantial fraction of the simulation runs for 6 ≤ NS ≤ 12
when NA,i = 100, NR,i = 0, and for 0 ≤ NS ≤ 8 when NA,i = 10, NR,i = 10.
This suggests that when stochastic fluctuations make the convergence on either
sink possible, the probability that a given system switches to the ON state is
nonzero for smaller NS than the deterministic critical value at which the system
becomes monostable (in this case, NS = 12). It is apparent then that the initial
population sizes markedly affect the transition to the ON state. In the example
with initial populations NA,i = 10, NR,i = 10, the system is much more likely to
end up in the ON state even when NS = 0 (58% of the time in our simulations).
Therefore, our work suggests that a system’s transition from one switch state to
another is strongly dependent on the initial state of the system (in accordance
with our earlier observations on the signal-free mutual inhibition switch motif).
The dependence can be qualitatively assessed by observing where on the state
space the initial condition lies and how the direction field and proximity to the
stable fixed points affects the possible stochastic trajectories of the system.

As previously shown in Figure 3.18, the presence of S leads to the saddle
and fixed point corresponding to sink 2 getting closer together in the phase
plane. Trajectories that are in the neighborhood of sink 2 can transition to sink
1 when stochastic fluctuations of sufficient magnitude allow the system to flow
along the direction dictated by the saddle’s unstable manifold, thus entering
sink 1’s basin of attraction. It is then reasonable to propose that such reversals
will be more common than in the signal-free case (Figure 3.16) because smaller
fluctuations will be needed given the saddle’s increased proximity to sink 2.
Indeed, we show an example of a noise-induced switch state reversal (sink 2 to
1) in Figure 3.20. Notice that the scale of simulated time needed to observe such
a reversal is two orders of magnitude smaller than in the signal-free case (103 vs.
105 sec), suggesting a higher likelihood of a trajectory switching to sink 1’s basin
of attraction. The above hypothesis also suggests that sink 1 to 2 reversals will
be correspondingly less frequent since the saddle is moving further away from
sink 1 as NS increases. The system would therefore have a bias toward settling
in sink 1 as NS increases within the range of deterministic bistability. This
agrees with what we have shown to be the case in our simulations (Figure 3.19).

Becskei et al. (2001) have observed such a switch-state reversal in Saccha-
romyces cerevisiae cells while studying the behavior of a synthetic eukaryotic
gene switch. The authors investigated the switching behavior of an artifi-
cial positive-feedback loop, unlike the mutual inhibition motif we have sim-
ulated here. Nonetheless, we remark here the experimental observation of a
spontaneous transition to an alternate stable state of a real system. Interest-
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Figure 3.19 – Irreversible mutual inhibition switch motif: stochastic SR curve. We used
the ABK algorithm to simulate the motif presented in Figure 3.17 with complete repression
for all three inhibitory interactions and the following parameters: ka = kr = 1 sec−1,
κa = κr = 0.01 sec−1, K50 = K50,S = 50, nH = 3, nH,S = 1. We simulated the motif
for 5000 sec with fixed time step increments of ∆t = 0.02 sec and for integer values of the
interval 0 ≤ NS ≤ 20. We then averaged the population sizes over the last 1000 sec to
estimate N∗

R for each simulation. We repeated this procedure 100 times. We show the
results of the simulation for two sets of initial population sizes: NA,i = 100, NR,i = 0 (i.e.,
the switch effectively being in the OFF state) and NA,i = 10, NR,i = 10. a) SR curve
for the results of the ABK simulation superimposed on the deterministic bifurcation diagram
(3.19c). The cyan crosses and green circles represent the average steady-state values for the
population of R, <N∗

R>, for the two different initial conditions (each half of the error bars
is one standard deviation from the mean). b) We show the frequency of the system being
in the ON state for each NS value. The vertical orange dashed line shows the critical NS

value at which the deterministically-predicted region of bistability ends.
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Figure 3.20 – Irreversible mutual inhibition switch motif: noise-induced switch state rever-
sal. We used the ABK method to simulate the mutual inhibition switch motif with the same
kinetic and inhibition parameters as in Figure 3.19 and NS = 10. The initial populations
sizes, NA,i = 100 and NR,i = 0, are in sink 2’s basin of attraction. We recorded the pop-
ulation time trajectories of species A and R for a total of 5000 sec of simulated time. The
system quickly settles around sink 2, but a noise-induced switch state reversal occurs in the
time window of 3400−3800 sec. Once again, sinks 1 and 2 represent the ON (high NR) and
OFF (low NR) switch state respectively. We also show the deterministic time trajectories
(dashed curves) that converge on sink 2 (OFF state) given the initial condition.
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ingly, Becskei et al. only observed such transitions to the ON state, as we predict
would be the case for our simulated system as NS increases within the region
of bistability (0 ≤ NS ≤ 12).

We will not further elaborate here on the dynamics of this motif, other than
to summarize that the ABK algorithm provides an easy and convenient way
of understanding how real populations (made of a discrete number of agents/-
molecules) behave in ways that deviate from deterministic predictions. Thus,
an ensemble of ABK simulations can be used to obtain statistical measures of
the system’s possible time trajectory, thereby making probabilistic predictions
about its behavior. This capability will be especially important when consider-
ing the presence of heterogeneity in species populations.
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Conversion to a reversible switch

The example switch we presented above is not exceptionally robust with respect
to its irreversibility. We briefly present here the result of modifying just one of
the system’s parameters so that it is converted from an irreversible to a reversible
switch.

We consider the same motif (Figure 3.17) with the following parameters:
ka = kr = 1 sec−1, κa = 0.005 sec−1, κr = 0.01 sec−1, K50 = K50,S = 50,
nH = 3, nH,S = 1. This is the exact same set of parameters as used in the
experiments described in the preceding subsection, except κa is half of its pre-
vious value and the degradation rates of the two species are no longer equal.
Species A is degraded more slowly than R and has a chance to accumulate, thus
opposing (or at least slowing down) the transition to the ON state (high N∗

R).
The consequence of the parameter change is that the switch remains discontinu-
ous, but big jumps in population sizes are expected for two critical values of NS
and the switch becomes reversible. That is, in addition to turning the system
OFF→ON as NS increases, a system in the ON state can switch back to OFF
when NS decreases sufficiently. This behavior is summarized by the determin-
istic bifurcation diagram presented in Figure 3.21a (colored in the same way as
in Figure 3.19a). The region of bistability is now 11 ≤ NS ≤ 74 and the switch
can be turned ON as NS surpasses the critical population size of 74, but can
also be turned OFF when NS decreases beyond 11 and the system “falls off”
the left edge of the upper set of stable fixed points (upper part of blue curve).

We have simulated this system using the ABK algorithm for the same two
sets of initial population sizes as before: NA,i = 100, NR,i = 0, and NA,i =
10, NR,i = 10. We show the results of the simulations in Figure 3.21. Our
observations and comments are similar to the ones for the irreversible switch
case.

The above case study suggests that altering the rate of just one of the pro-
cesses can have a profound effect on the dynamics of a hysteretic switch. A
potential application of this is the use of a pharmacological intervention (such
a competitive inhibitor to a suitably chosen enzyme) that renders a switch re-
versible, thus allowing for the reversal of a pathogenic state. This might be use-
ful, for instance, in controlling the reversibility of cell cycle checkpoint switches
whose aberrant regulation can lead to cancerous phenotypes (Kolch et al., 2015).
Thus, the selective manipulation of a system’s dynamical properties can be a
general strategy for system control with important applications in many fields.

Alternate mutual inhibition motif

The results we have presented in subsections 3.3.1 and 3.3.2 are based on motifs
of mutual inhibition where the regulatory interactions are directly effected from
one species to another. Thus, we used the RSF to mathematically describe the
mode of regulation in those cases. Here, we present an alternate version of this
motif that also leads to behavior characteristic of a hysteretic switch. In this
version, inhibition is brought about by promoting the degradation or conver-
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Figure 3.21 – Reversible mutual inhibition switch motif: stochastic SR curve. We used
the ABK algorithm to simulate the motif presented in Figure 3.17 and assumed complete
repression for all three regulatory interactions. Additional parameters: ka = kr = 1 sec−1,
κa = 0.005 sec−1, κr = 0.01 sec−1, K50 = K50,S = 50, nH = 3, nH,S = 1. We simulated
the motif for 2500 sec with fixed time step increments of ∆t = 0.02 sec and for integer values
of the interval 0 ≤ NS ≤ 100. We then averaged the population sizes over the last 1000 sec
to obtain an estimate for N∗

R in each simulation. We repeated this procedure 100 times.
We show the results of the simulations for two sets of initial population sizes: NA,i = 100,
NR,i = 0 (i.e., the switch effectively being in the OFF state) and NA,i = 10, NR,i = 10. a)
SR curve for the results of the ABK simulation superimposed on the deterministic bifurcation
diagram. The cyan crosses and green circles are the average steady-state values for the
population of R, <N∗

R>, for the two different initial conditions (each half of the error bars
is one standard deviation from the mean). b) We plot the frequency of the system being
in the ON state for each sampled NS value. The vertical orange dashed lines show the NS

values that define the deterministically-predicted range of bistability.
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sion of a species to another. Specifically, R promotes/catalyzes the conversion
of species E to Ep (equivalent to a phosphorylation reaction in biological pro-
cesses), thereby effectively inhibiting E by keeping its population low. In return,
E promotes the degradation of R, thus completing the inhibitory loop.

Figure 3.22 – Alternate mutual inhibition switch motif. Species E is reversibly converted to
Ep in reactions following Michaelis-Menten kinetics (with kinetic rate constants kf and kr,
and Michaelis constants KM,f and KM,r). R promotes the conversion of E to Ep, but is not
consumed in the reaction. Therefore, R effectively inhibits E. In turn, E enhances/catalyzes
the degradation rate of R, thus forming a mutual inhibition loop.

We do not show here a mathematical analysis and ABK simulation of this
motif, as we have already discussed the range of possible system behaviors in
our previous examples.

3.3.3 Hysteretic Switch from Mutual Activation
Here, we present an additional example of a hysteretic, reversible switch based
on mutual activation (instead of inhibition). Consider the motif in Figure 3.23.
The signal S promotes the synthesis of R and species E is reversibly phosphory-
lated to form Ep in a Michaelis-Menten fashion,16 a reaction that is promoted
by the response element R. In turn, Ep enhances the synthesis of R, thus form-
ing a mutual activation loop. Essentially, R stimulates its own production, thus
forming an autocatalytic or positive feedback loop.

16The interconversion between species E and Ep needs to follow Michaelis-Menten kinetics
to observe the dynamics we will describe here. A reversible conversion between E and Ep
that follows the law of mass action (as in section 2.10) yields a linear response motif, a case
we have already investigated and will not present here.
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Figure 3.23 – Mutual activation switch motif. Species E is reversibly converted to Ep in
reactions following Michaelis-Menten kinetics (with kinetic rate constants kf and kr, and
Michaelis constants KM,f and KM,r). R promotes the conversion of E to Ep, but is not
consumed in the reaction. Moreover, Ep enhances the rate of formation of R, thus forming
a mutual activation loop. Kinetic parameters for species R: kb and ks are the 0th order
basal and maximal (in the presence of the signal S) rate constants for the formation of
R, respectively, and kd is the 1st order degradation rate constant. We assume no further
synthesis and degradation reactions for E and Ep (therefore, NE + NEp = constant =
NE,T OT ) and that the population size of S remains constant.

The differential equations used to describe this motif are

dNR
dt

= (kbNEp + ksNS) − kdNR (3.23)

dNEp
dt

= krNR
NE,TOT −NEp

KM,r + (NE,TOT −NEp)
− kf

NEp
KM,f +NEp

, (3.24)

where in the first equation we have grouped the terms corresponding to the
synthesis of R in parentheses, and in the second we used NE+NEp = constant =
NE,TOT . As we have previously done with hysteretic switches, we illustrate
the deterministic dynamics that this motif can exhibit by plotting the phase
plane for a particular value of NS that falls within the region of bistability
(Figure 3.24). The saddle and stable fixed point on the lower left corner of
the phase plane (switch state: OFF) get closer as NS increases and eventually
collide with each other at NS ≈ 19. The system becomes monostable beyond
this threshold and the only remaining attractor is the fixed point on the right
side of the figure (switch state: ON). Notice that a transition from OFF to ON
results in higher population sizes for both species R and Ep.

Follow this link to
see the Matlab code.

We succinctly present the results obtained from applying the ABK algorithm
to this motif by plotting the deterministic bifurcation diagram (with respect
to NS) and superimposing the stochastic simulation results for two different
initial population sizes (Figure 3.25). We obtained similar results to the case
of a reversible switch obtained through mutual inhibition (Figure 3.21). We
conclude our presentation of this motif by showing an example of noise-induced
switch state reversals in Figure 3.26. Our previous comments and observations
on such transitions (Figures 3.16 and 3.20) apply here as well.

We further note that just as in the previous examples we have considered,
changes in the kinetic parameters of this system can result in the switch becom-
ing irreversible. Mutual inhibition and activation motifs are therefore capable
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Figure 3.24 – Mutual activation switch motif: phase plane. We consider the mutual
activation motif with the following parameters: kb = 0.02 sec−1, ks = 0.05 sec−1, kd =
0.075 sec−1, kf = 1 sec−1, kr = 0.05 sec−1, KM,f = 5, KM,r = 10, NE,T OT = 100.
Here we show the phase plane for NS = 15. Note that the saddle and stable fixed point
on the lower left “move” toward one another (and eventually annihilate each other) as NS

increases. The switch states are: ON (high NR and NEp) and OFF (low NR and NEp), as
indicated in the plot.

of producing a hysteretic switch response, whose (ir-)reversibility, viewed as a
property of the system, depends on the specific values of the kinetic parameters
characterizing the relevant processes. Importantly, we will revisit the mutual
activation switch motif in Chapter 4 (section 4.10), where we will examine the
effect of population heterogeneity on hysteretic switches.
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Figure 3.25 – Mutual activation switch motif: stochastic SR curve. We used the ABK
algorithm to simulate the motif presented in Figure 3.23 with the same parameters as listed
in Figure 3.24, and integer values of the signal in the interval 0 ≤ NS ≤ 30. The total
simulated time was 1500 sec with fixed time step increments of ∆t = 0.02 sec. We averaged
the population sizes over the last 750 sec to estimate N∗

R for each simulation. We repeated
this procedure 100 times. We show the results of the simulation for two sets of initial
population sizes: NR,i = 0, NEp,i = 0 (i.e., the switch starts out being in the OFF state),
and NR,i = 10, NEp,i = 50. a) SR curve for the results of the ABK simulation superimposed
on the deterministic bifurcation diagram. The cyan crosses and green circles are the average
steady-state values for the population of R, <N∗

R>, for the two different initial conditions
(each half of the error bars is one standard deviation from the mean). b) We plot the
frequency of the system being in the ON state as a function of NS . The vertical orange
dashed lines show the range of NS values for which the system is predicted to be bistable.
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Figure 3.26 – Mutual activation switch motif: noise-induced switch state reversal. We
used the ABK method to simulate the mutual inhibition switch motif with the same kinetic
and inhibition parameters as in Figure 3.24. The switch states are: ON (high NR and NEp)
and OFF (low NR and NEp). We recorded the population time trajectories of species Ep
and R for a total of 1.5 × 104 sec of simulated time. The initial population sizes are in the
basin of attraction of state OFF: NEp,i = 0 and NR,i = 0. The system initially settles in
the neighborhood of state OFF, but two noise-induced switch state reversals occur at the
indicated time points, thus eventually returning the system to the OFF state. We also show
the deterministic trajectories (dashed curves) which converge on the OFF state given the
initial condition.
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3.4 Adaptation and Homeostasis
Systems sometimes need to be able to resist changes due to varying levels of
a signal. We explore how this is made possible through prototypical motifs
that exhibit the phenomena of adaptation and homeostasis. In both cases, the
steady-state level of response is largely if not completely independent
of the presence of signal, while the difference between them is that there is a
transient response to the signal level in the adaptive case.

3.4.1 Perfect Adaptive Response Motif
We build on the linear response motif (presented in subsection 3.1.1) to examine
the case where changes in the level of stimulus produce a transient response
that invariably returns to a signal-independent steady state. We refer to this
response mechanism as perfect adaptive response. Chemotactic systems are the
best-studied biological examples of this type of response.

In the linear response motif, a signal S activates the production of R. In
this case, we maintain this relationship between S and R, but add a second
pathway: S also promotes the production of species X, which in turn promotes
the degradation of R. The following figure shows the reaction scheme we will
consider here.

Figure 3.27 – Perfect adaptive response motif. k1 and k3 are the microscopic rate constants
for the synthesis of R and X, while k2 and k4 are the rate constants for the degradation of
R and X, respectively. We assume that S promotes, or favors, both syntheses reactions and
that the number of S agents does not change. X promotes the degradation of R.

Our intuitive expectation is that increasing levels of S increase the number
of R and X agents (at a rate proportional to k1 and k3, respectively), but
X increases R’s degradation rate thereby not allowing the population of R to
grow over long time scales. Notice that S regulates R in two different ways:
a) directly, by stimulating its production, and b) indirectly, by stimulating the
production of X which inhibits R by promoting its degradation. Therefore,
S can be thought of as regulating R via two distinct pathways with opposite
regulatory effects. This topology of interactions is sometimes referred to in the
literature as an incoherent feedforward loop (iFFL; Ferrell, 2016).

k1 and k3 are the 1st order microscopic rate constants for the production of
R and X. We have seen before that such “birth” processes can also be modeled

127



as 0th order in the ABK algorithm because we assume that S is not consumed
while promoting these syntheses reactions (alternatively, S can be thought of as
being regenerated during each reaction event). k2 is the 2nd order microscopic
rate constant for the degradation of R, but we assume X is not consumed during
this process (or is regenerated). Finally, k4 is the 1st order rate constant for the
degradation of X.

We now state the differential equations describing this reaction scheme and
then examine the deterministic predictions for the steady-state level of R.

dNR
dt

= k1NS − k2NXNR (3.25)

dNX
dt

= k3NS − k4NX (3.26)

We find the steady-state value of the population of R, N∗
R, by setting both of

the above equations equal to zero and combining them to obtain

N∗
R = k1k4

k2k3
(3.27)

N∗
X = k3NS

k4
(3.28)

This reveals the crucial property of this motif: the steady-state value for the
population of R does not depend on the signal population, NS .

Follow this link to
see the Matlab code.

We present the results of using the ABK algorithm to model the time
evolution of the populations of R and X in a system with kinetic constants
k1 = 0.500 sec−1, k2 = 0.005 sec−1, k3 = 0.100 sec−1, k4 = 0.050 sec−1, and ini-
tial populations NR,i = NX,i = 0. First, we graph the rate-balance plot showing
how the rates of synthesis and degradation of R (first and second terms of equa-
tion 3.25, respectively) depend linearly on the population size of R (Figure 3.28).
The intersections of the synthesis and degradation curves represent the steady
state of the system. It is clear in the figure that the steady states produced
for the four different values of NS are predicted to be the same (N∗

R = 50), in
agreement with the expectation that N∗

R does not depend on NS .
We then used the ABK algorithm to model this system for a total simulated

time of 300 sec with fixed time step increments ∆t = 0.01 sec, and with NS
increased in a step-wise manner by 10 agents every 60 sec (sampled NS values:
15, 25, 35, 45). In the last step, we maintained NS = 45 for the final 120 sec
of the simulation. Figure 3.29a shows that the average time trajectories of NR
and NX after 500 repetitions of the algorithm are in excellent agreement with
the numerical solution to the differential equations 3.25 and 3.26.
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Figure 3.28 – Perfect adaptive response motif: rate-balance plot. We graph the rates of
NR synthesis (dNR/dt = k1NS ; green curves) and NR degradation (dNR/dt = k2NXNR;
magenta curves) as a function of its population size, for four different signal values: NS =
15 (solid curves), 25 (dashed curves), 35 (dotted curves), 45 (dot-dashed curves). We
generated the degradation curves by using the steady-state value of NX , N∗

X = k3NS
k4

. The
intersections (marked by black open circles) represent the steady state of the population
of R, N∗

R. Kinetic parameters: k1 = 0.500 sec−1, k2 = 0.005 sec−1, k3 = 0.100 sec−1,
k4 = 0.050 sec−1. Given these parameter values, the predicted steady-state response is
N∗

R = 50.

Perfect adaptive response from hyperbolic response motif

We briefly show another way to obtain a perfect adaptive response that utilizes
the motif producing a hyperbolic SR curve (Figure 3.3). This new motif has S
promoting the production of R and species X, the latter promoting the conver-
sion of R back to A (see Figure 3.30 below), thus leading to adaptation. The
reader will notice that the topology of interspecies interactions is the same as
in the case we presented above, thus this motif is an iFFL.

Figure 3.30 – Perfect adaptive response: alternate motif. We supplement the hyperbolic
response motif (Figure 3.3) with a pathway involving species X. S promotes the synthesis
of both R and X, but X promotes the conversion of R back to A. We assume that the
population of S does not change. In addition, X is not consumed during the conversion
R → A.
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Figure 3.29 – Perfect adaptive response motif: time course. We used the ABK algorithm
to model the time evolution of the motif shown in Figure 3.27. All kinetic constants are as
indicated in Figure 3.28 with initial populations NR,i = NX,i = 0. For all simulations, we
used fixed time step increments of ∆t = 0.01 sec and the Pber or Pdif transition probability
expressions (we obtained identical results using both approaches). a) Average population
sizes from 500 repetitions of the simulation. The deterministic time course for NR (cyan
dashed curve) is also shown. The orange dashed line is the predicted steady state N∗

R = 50.
b) We show a sample run of the ABK-simulated population time trajectories.
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This motif is a 2-dimensional system with variables NR and NX because
the populations of A and R are related by NA(t) + NR(t) = NTOT = NA,i +
NR,i (we have assumed the absence of any additional synthesis and degradation
reactions). Therefore, the differential equations for this system are

dNR
dt

= kfNSNA − krNXNR

dNR
dt

= kfNS (NTOT −NR) − krNXNR , (3.29)

and
dNX
dt

= kbNS − kdNX . (3.30)

The reader can confirm that the deterministic prediction for the steady-state
value of the population size of R is

N∗
R = ρ

1 + ρ
NTOT , (3.31)

where

Follow this link to
see the Matlab code.

ρ = kfkd
krkb

. (3.32)

The important thing to note about N∗
R is that it once again does not depend on

NS . Therefore, despite an initial transient change, NR approaches its steady-
state level. We show an ABK simulation sample run of this motif in Figure 3.31.
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Figure 3.31 – Perfect adaptive response: alternative motif time course. We simulated
the motif presented in Figure 3.30 using the ABK algorithm with the following parameters:
kinetic constants kb = 0.10 sec−1, kd = 0.10 sec−1 , kf = 0.01 sec−1, kr = 0.10 sec−1

; initial populations NA,i = 100, NR,i = 0 (i.e., NT OT = 100), NX,i = 0; NS = 50
(held constant). The motif was simulated for a total time of 40 sec with fixed time step
increments of 0.01 sec. Given these parameters, N∗

R ≈ 9 agents. The dashed curves show the
deterministic predictions for each of the two species. Also note that the average trajectories
from an ensemble of ABK simulations agreed with deterministic predictions (not shown).
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We have also attempted simulating the same motif but with additional pro-
cesses accounting for the synthesis and degradation of A and R. We again
observed perfect adaptation (results not shown).

3.4.2 Imperfect Adaptive Response Motif
We considered the case of perfect adaptive response where NR always returns
to the same level regardless of NS . Here we examine a similar motif exhibiting
adaptation, but with N∗

R having a dependence on the magnitude of NS . We
therefore expect a transient change in the response (caused by a change in the
level of signal) to be followed by a return to a new and different basal steady-
state level. We refer to this adaptive response as imperfect.

In the reaction scheme we presented in Figure 3.27, S promotes the synthesis
of both R and X, with X promoting the degradation of R. Therefore, X is
indirectly inhibiting the growth of the population of R. This suggests that we
can modify the motif and model the explicit inhibition, or repression, of the
formation of R by X, as shown in Figure 3.32 below.

Figure 3.32 – Imperfect adaptive response motif. S promotes, or favors, both synthesis
reactions and the number of S agents does not change. X inhibits the synthesis of R (red
arrow) and we assume that the number of X agents does not change as a result of this
regulatory activity. All kinetic rate constants are as described in Figure 3.27, except k2 is
now a 1st order constant for the degradation of R.

We use an appropriate regulation scaling Function (RSF, as described in
section 2.9) to model the X-mediated inhibition of the 0th order synthesis of R.
The RSF has the general form (equation 2.148)

F (NX) = KnH
50 + αNnH

X

KnH
50 +NnH

X

=
1 + α

(
NX

K50

)nH

1 +
(
NX

K50

)nH
.

We will assume for the purposes of this discussion that α = 0 (complete repres-
sion). K50 is the number of agents of X that produce half-maximal repression
and nH is the Hill coefficient indicating the degree of cooperativity of the pro-
cess.
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We begin be stating the differential equations describing this motif.

dNR
dt

= k1NS

[
1 +

(
NX
K50

)nH
]−1

− k2NR (3.33)

dNX
dt

= k3NS − k4NX (3.34)

Setting these equations equal to zero to evaluate the fixed point of the system
and combining them to obtain expressions only in terms of NS , we get

N∗
R =

(
k1

k2

)
NS

1 +
(

k3
k4K50

NS

)nH
(3.35)

N∗
X = k3NS

k4
. (3.36)

Notice that N∗
X has the same form as in the case of perfect adaptation. However,

equation 3.35 shows a clear dependence of N∗
R on NS , and the exact form of the

signal-response (SR) curve depends on the Hill coefficient nH (see Figure 3.33).
In the limiting case of nH = 0, the SR curve is linear, as one would expect
since this choice of nH is indicative of no regulatory cross-talk between the two
pathways (in essence, the motif becomes the separate birth-death processes for
R and X, respectively). For nH = 1, the SR curve is hyperbolic and approaches
a maximum value of k1k4

k2k3
K50 as NS → ∞. In the cases where nH > 1, N∗

R → 0
as NS → ∞, as we would expect since the increased cooperativity of inhibition
eventually shuts down the formation of R completely. This end behavior is
preceded, however, by an initial increase in N∗

R, with a maximum, denoted by
N∗
R,max, occurring at

NS = (nH − 1)−1/nH

(
k4K50

k3

)
, {nH > 1} , (3.37)

which upon substitution into equation 3.35 yields the N∗
R,max value of

N∗
R,max = k1k4

k2k3
K50

 (nH − 1)
nH −1

nH

nH

 . (3.38)

We have highlighted the maximum N∗
R values for nH = 2, 3, 4 (filled orange

Follow this link to
see the Matlab code.

circles in Figure 3.33). We have also plotted N∗
R,max for nH = 1.1 → 100

(nH = 100 effectively represents infinite cooperativity), shown as an orange
dashed line in the same figure. Notice that this curve consists of ordered pairs
(NS , N∗

R,max), where each quantity is a function of nH . This curve is therefore
a parametric representation of the indicated variables with respect to nH , where
the “flow” through the curve is initially fast and then slows down as nH → ∞.
We invite the interested reader to continue with the mathematical analysis of
this curve’s behavior, which we do not present here in the interest of brevity. We
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Figure 3.33 – Imperfect adaptive response motif: predicted SR curve. We show the
deterministically predicted SR curves for different values of nH (equation 3.35). The curves
were generated using the motif presented in this section (Figure 3.32) with kinetic constants
k1 = 0.50 sec−1, k2 = 0.10 sec−1, k3 = 0.10 sec−1, k4 = 0.05 sec−1, K50 = 40, and the
indicated nH values. The maximal steady-state response, N∗

R,max, is also plotted for a range
of Hill coefficient values, nH = 1.1 → 100 (orange dashed curve), with the lower values of
nH starting on the right side of the plot and passing by the N∗

R maxima corresponding to
nH = 2, 3, 4 (filled orange circles).

merely mention the interesting case where the smallest value of N∗
R,max occurs

at nH = 2.
As we did in the case of perfect adaptation, we simulated the time evolution

of this motif using the ABK algorithm. We show the results of these simulations
for nH = 1 and nH = 2 in Figure 3.34. As in the case of perfect adaptation,
the average species trajectories agreed with the deterministic expectations.

134



0 50 100 150 200 250 300

0

10

20

30

40

50

60

70

80

90

100

a)

0 50 100 150 200 250 300

0

10

20

30

40

50

60

70

80

90

100

b)

Figure 3.34 – Imperfect adaptive response motif: time course. We used the ABK algorithm
to model the time evolution of the motif shown in Figure 3.32 with kinetic rate constants
k1 = 0.50 sec−1, k2 = 0.10 sec−1, k3 = 0.10 sec−1, k4 = 0.05 sec−1, K50 = 40, and initial
populations NR,i = NX,i = 0. We ramped up the signal population size (red line) at 60 sec
intervals (NS values: 5, 20, 35, 50). We used fixed time step increments of ∆t = 0.01 sec for
all simulations, and the Pber or Pdif transition probability expressions (we obtained identical
results using both approaches). a) Average population sizes from 500 repetitions of the
simulation with Hill coefficient nH = 1. The deterministic time course for the population of
R (cyan dashed curve) is also shown. The orange dashed lines are the predicted steady-state
N∗

R values for the time period corresponding to a given NS value. b) Same as in a, except
we ran the simulations with nH = 2.
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3.4.3 Homeostasis
We present here a motif exhibiting homeostasis, where the steady-state response
level is confined to a small range of values for a wide range of signal levels (i.e.,
a largely signal-independent steady state). Moreover, this motif’s behavior is
different from adaptation because it shows no transient response to a change in
signal levels.

We show the homeostasis motif in Figure 3.35. Its key feature is a negative
feedback loop where species E promotes the synthesis of R, while R promotes
the conversion of E into Ep (e.g., a phosphorylation reaction). In this case, the
signal S promotes (or catalyzes) the degradation of R. Therefore, one would
expect that as S increases the population of R would decrease in size, which in
turn allows E to accumulate and, therefore, R to rebound. Thus, the negative
feedback loop ensures the level of R stays approximately the same.

Figure 3.35 – Homeostatic response motif. R promotes the conversion of E to Ep, while
E promotes the synthesis of R. This antagonistic relationship between R and E is a (two-
component) negative feedback loop. S favors the degradation of R. We assume that a)
no further synthesis and degradation processes occur for species E and Ep, thus NE(t) +
NEp(t) = constant = NE,T OT , and b) the population size of S stays constant.

The homeostatic response motif is described by the 2-dimensional set of
differential equations,

dNR
dt

= kbNE − kdNSNR (3.39)

dNE
dt

= kf
NE,TOT −NE

KM,f + (NE,TOT −NE) − krNR
NE

KM,r +NE
, (3.40)

where we have assumed that the conversion between E and Ep follows Michaelis-
Menten kinetics and used the restriction NE +NEp = NE,TOT to substitute for
NEp in equation 3.40. Setting both equations equal to zero allows us to obtain
expressions for the steady-state values N∗

R and N∗
E (although combining them

to derive an expression for N∗
R in terms of NS is algebraically cumbersome).

We numerically determine N∗
R for different values of NS to graph the SR curve

in Figure 3.36b (shown in blue). A qualitative way of assessing what the SR
curve looks like is by constructing a rate-balance plot, as we have done before.
Figure 3.36a shows the rate-balance plot, where the intersections between the
rates of NR synthesis and degradation denote the values of N∗

R. The decreasing
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sigmoidal curve for the rate of NR synthesis is due to the negative feedback
loop and does not depend on NS . Therefore, when the degradation rate curve

Follow this link to
see the Matlab code.

(which depends on NS) intersects the synthesis curve at its region of steepest
decline, N∗

R falls within a narrow range of values.
We compare the results of applying the ABK method to simulating this motif

with the deterministic SR curve in Figure 3.36b. The agreement is excellent
(R2 = 0.9717).
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Figure 3.36 – Homeostatic response motif: rate-balance plot and SR curve. We used the
ABK algorithm to model the time evolution of the motif shown in Figure 3.35, with kinetic
rate constants kb = 0.02 sec−1, kd = 0.002 sec−1, kf = 1.00 sec−1, kr = 0.05 sec−1,
KM,f = 5, KM,r = 10, with initial populations NR,i = 20, NE,i = 70, and NE,T OT =
100. a) Rate-balance plot showing the rates of synthesis (green) and degradation (magenta)
of R as a function of NR. Since degradation depends on NS , we have plotted the synthesis
curves for values of NS = 1 − 40 (shown here in multiples of 5; selected NS values are
highlighted in green). The intersections (marked by the hollow black circles) represent the
steady-state values of population R, N∗

R. b) We used the ABK algorithm to model this
motif for a total simulated time of 1500 sec using fixed time step increments of ∆t =
0.02 sec. We performed separate simulations for distinct integer values of S agents (NS =
1−40) promoting the degradation of R, where we assumed that the population of S remains
constant. We plot here N∗

R (averaged over the course of the last 750 sec of simulated
time to account for the variation in population size due to stochasticity once the steady
state had been reached) vs. NS for each of the performed simulations (red crosses). The
blue curve is the deterministic signal-response curve (obtained for each value of NS by
numerically determining N∗

R from the differential equations describing this motif). The
agreement between the simulations and the theoretical curve is excellent (R2 = 0.9717).
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3.5 Oscillator Systems
We now turn our attention to oscillators. We begin by presenting the 2-
component negative feedback motif, which is not theoretically capable of os-
cillations. However, we observe in our simulations that the level of response
has quasi-regular large fluctuations around its predicted steady-state level. We
term this phenomenon persistent high-amplitude fluctuations (or PHAF). If this
behavior is experimentally verified to be true, it would mean that systems in
the regime of small population sizes can generate oscillatory activity more easily
than expected based on deterministic arguments. We also use the case of the
2-component negative feedback motif to illustrate how the ABK algorithm can
be adapted to explicitly model time delays in one or more processes. Time de-
lays are well-known to result in oscillations and, indeed, our simulations support
this expectation and are in agreement with the solution of the system’s delay
differential equation, or DDE. We note that the algorithm allows for specified
delay values to be associated with specific agents. As a result, a delay becomes
another parameter that can be taken into account when modeling heterogeneous
populations (we present this case in the next chapter, section 4.11).

Increasing the number of components in a negative feedback loop is known
to result in oscillatory activity. For instance, adding just one additional species
to the aforementioned 2-component loop can be thought of as an implicit form of
time delay, thus affecting the temporal dynamics of an effector species regulating
its downstream target. We verify this prediction in the 3-component negative
feedback motif. We also study alternative ways to produce oscillations: the
activator-inhibitor and substrate-depletion motifs. In all of these cases, we
observe persistent high-amplitude fluctuations for sets of parameters that are
deterministically predicted to act as damped oscillators and we speculate on
how stochasticity can be the origin of this phenomenon.

3.5.1 Negative Feedback 2-Component Motif
We first consider motifs that feature a negative feedback loop. We show in
Figure 3.37 the simplest such motif characterized by the regulatory interaction
between species R and X/Xp. Specifically, R enhances the production of Xp,
which in turn promotes the degradation of R, thus completing the feedback
loop.17 This kind of regulatory loop can produce an adaptive response for the
right set of parameters (Ferrell, 2016), a behavior we showcased in section 3.4
by simulating iFFLs. We have verified that this motif results in adaptation, but
will focus instead on its oscillatory dynamics in the ensuing presentation. Specif-
ically with regard to oscillatory activity, mathematical analysis of a simplified
2-component negative feedback loop has shown that it is not capable of produc-
ing sustained oscillations for any set of parameters (Griffith, 1968). However,
as we shall see, our presentation of applying the ABK algorithm to simulat-
ing this motif shows that stochasticity can produce sustained high-amplitude
fluctuations with irregular periodicity.

17The negative feedback can also take the form of Xp directly inhibiting the synthesis of R.
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Figure 3.37 – Negative feedback 2-component motif. R promotes the conversion of X to
Xp, which in turn has an inhibitory effect on R by promoting its degradation (or, alterna-
tively, by inhibiting the synthesis of R; not shown). Thus, an overall negative feedback loop
is formed where R ultimately promotes its own degradation by regulating an intermediate
species, X. The signal, S, enhances the synthesis of R, and we assume that the population
size of S, NS , remains constant. kb and ks are the basal 0th and 1st order (with respect to
S) rate constants for the synthesis of R, respectively. Similarly, kd1 and kd2 are the basal 1st

order (with respect to R) and overall 2nd order (1st order with respect to each, R and Xp)
rate constants for the degradation of R, respectively. We assume that the interconversions
between X and Xp follow Michaelis-Menten kinetics and that no further synthesis or degra-
dation processes occur for these species (i.e., NX,T OT = NX(t) + NXp(t) = constant).

We assume that the combined population size ofX andXp remains constant,
which we denote by NX,TOT . Given this restriction, the deterministic descrip-
tion of this motif requires the use of only two variables, NR(t) and NXp(t).
Their respective differential equations are

dNR
dt

= (kb + ksNS) − (kd1NR + kd2NRNXp) (3.41)

dNXp
dt

= kfNR
NX,TOT −NXp

KM,f + (NX,TOT −NXp)
− kr

NXp
KM,r +NXp

. (3.42)

Note that we have grouped in parentheses the terms that correspond to the
synthesis and degradation of R in equation 3.41. kb represents the rate constant
for the basal level of the synthesis of R, while kSNS is a measure of how much S
increases the rate of the process (as in previous cases in this chapter, we assume
NS = constant). Similarly, we use two degradation terms: one with 1st order
rate constant kd1 that reflects the basal rate of R’s degradation in the absence
of Xp, and a 2nd order process which depends on both R and Xp (rate constant
kd2).

ABK simulation

Follow this link to
see the Matlab code.

We begin by presenting the results of simulating this motif with kinetic con-
stants kb = 0 sec−1, ks = 0.100 sec−1, kd1 = 0 sec−1, kd2 = 0.005 sec−1, kf =
0.010 sec−1, kr = 1.000 sec−1, Michaelis constants KM,f = KM,r = 10, a
constant signal population size NS = 30, initial population sizes NR,i = 0,
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NXp,i = 0, and NX,TOT = NX(t) + NXp(t) = 100. We refer to this set of
parameters as case 1. The 2-dimensional system of differential equations de-
scribing this motif has a single stable fixed point which we have evaluated using
numerical methods: N∗

R = 56.99 and N∗
Xp = 10.52. Linearization in the neigh-

borhood of the fixed point yields the eigenvalues λ1,2 = −0.0385±0.0486i, whose
negative real part and presence of an imaginary component predict decaying (or
damped) oscillations in the deterministic time trajectory. Figure 3.38a shows
the excellent agreement between the average time trajectories obtained from
the ABK simulation (n = 500) and the deterministic ones. However, inspection
of individual simulation trajectories shows the presence of high-amplitude and
irregular fluctuations for both species R and Xp that occur well beyond the
expected time window of damped oscillatory activity (0 < t < 150 sec). We
observed this behavior in all simulation runs we attempted (see Figure 3.38b for
a representative example) and for arbitrarily long simulated time periods. We
further analyzed these fluctuations by computing a measure of the noise in the
simulation trajectories, the coefficient of variation,18

η(t) = σ(t)
<N(t)> . (3.43)

This quantity can be computed for each of the species in the system whose av-
erage time trajectory and standard deviation have been computed. Assuming
that the synthesis and degradation/elimination processes that each species par-
ticipates in are independent of each other, then a species can be thought of as
being part of a birth-death process (section 2.8). Such a process obeys Poisson
statistics19 and has the property σP =

√
<N>. Therefore, the coefficient of

variation is ηP (t) = 1/
√
<N(t)>, which we consider to be a measure of the level

of intrinsic noise expected for a system obeying Poisson statistics. We show a
comparison of η and ηP for both species in Figure 3.38c and observe that the
fluctuations for species R are higher than expected (ηNR

≈ 2 ηP ). We propose
that the high variability in the level of R results from the (damped) oscillatory
dynamics of the system leading to a long excursion around the fixed point when
a perturbation of sufficient magnitude occurs. Such perturbations in NR can
occur through the regulatory effect of species Xp, whose small population size
is subject to large relative changes due to stochasticity.

We show the phase plane for this motif in Figure 3.38d to illustrate how
the observed large fluctuations in NR can occur. The deterministic trajectory
follows a spiraling path toward the fixed point, as would be expected for decaying
oscillations given the aforementioned eigenvalues. However, a perturbation in
NR can result in a stochastic trajectory taking a long path around the fixed
point (as shown by the light brown dashed curve in the figure).

We now discuss the effect of noise in the small population size of Xp (recall
that N∗

Xp ≈ 10). In this regime of a low copy number population, noise-induced
18Introduced in equation 2.145 and reproduced here in more succinct notation.
19It is reasonable to question this assumption. Some authors have argued that the negative

binomial distribution is more appropriate for describing chemical systems (Paulsson et al.,
2000).
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Figure 3.38 – Negative feedback 2-component motif: time course (case 1). We used
the ABK algorithm to model the time evolution of the motif shown in Figure 3.37 with
kinetic constants kb = 0 sec−1, ks = 0.100 sec−1, kd1 = 0 sec−1, kd2 = 0.005 sec−1, kf =
0.010 sec−1, kr = 1.000 sec−1, and Michaelis constants KM,f = KM,r = 10. We used a
constant signal population size NS = 30, initial population sizes NR,i = 0, NXp,i = 0, and
NX,T OT = NX(t) + NXp(t) = 100. We simulated this motif for a total time of 500 sec
with fixed time step increments of ∆t = 0.01 sec. a) We plot the average time trajectory
(n = 500) of the populations NR and NXp (blue and red curves respectively) along with
their one-standard-deviation envelopes (gray dashed curves). The deterministic trajectories
are also shown (labeled “DE” in the legend). b) We show a sample simulation run that is
representative of the persistent high-amplitude fluctuations observed in our simulations. c)
We compare the coefficient of variation, η(t), for each of the species with ηP (t) for a Poisson
process. The black curve indicates that the trajectory of species R shows a significantly larger
deviation from its mean than expected. d) Phase plane for this motif. The deterministic
trajectory spirals into the fixed point (i.e., decaying oscillations) at the intersection of the
two nullclines. An intrinsic perturbation (i.e., noise; brown dashed arrow) sends the system
along a stochastic counterclockwise excursion around the fixed point. Note that the direction
and size of the perturbation can vary and is only shown here as an example. We show a
smoothed-out cartoon version of a sample stochastic trajectory (light brown dashed curve)
to facilitate visualization. The deterministic direction field is depicted as green arrows.
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changes in NXp propagate to its regulatory target by producing large changes in
the transition probability for the degradation of R. For example, if NXp(t) = 6
at some time t and over a subsequent time interval τ the population doubles
(i.e., NXp(t+ τ) = 12), then the per-R-agent probability of a degradation event
doubles as well. This is most easily seen using the Pdif formulation of transition
probabilities. That is, for our example,

Pdif,R(t+ τ)
Pdif,R(t) = kd2NXp(t+ τ)

kd2NXp(t)
= 2 , (3.44)

and the population of R would decrease accordingly since each agent has a higher
probability of degradation. Thus, the relative change in the population size of
Xp results in an equivalent change in the probability of R’s disappearance,
leading to a transient decrease in NR. A similar argument can be made for
changes in NXp that lead to a large increase in NR.

The above hypothesis implies that if N∗
Xp increases (as a consequence of

changes in the motif’s parameters), the high-amplitude fluctuation in R would
decrease since the noise-induced relative changes in NXp will be smaller. We
have simulated this motif for several other parameter combinations and have
indeed found this to be the case. In the interest of brevity, we present here
just one of those additional cases that can be thought of as demonstrating the
diametrically opposite effect: a reduction in noise level of Xp. Figure 3.39 shows
our results for this example (case 2). The chosen parameters (same as in case 1,
except ks = 0.300 sec−1 and kf = 0.10 sec−1) result in the deterministic steady-
state population levelsN∗

R = 19.7, N∗
Xp = 91.5 (these values effectively represent

the reverse of case 1 in terms of steady-state population sizes; here, N∗
R < N∗

Xp).
Note that the stable fixed point in this case is not reached via a spiral trajectory
within state space (i.e., there are no decaying oscillations), as revealed by both
eigenvalues being real and negative (λ1 = −0.4460, λ2 = −0.0703). We show the
phase plane for this system in panel d of the same figure, where the intersection
of the nullclines corresponds to the fixed point. It is clear that when there is no
spiraling tendency in the system, a perturbation in the population sizes will not
result in a long excursion around the fixed point. Instead, the trajectory has
small-amplitude fluctuations in the immediate neighborhood of the fixed point.

We also plot the noise levels in panel c and observe that the time trajectory
of species Xp is significantly less noisy than expected for a Poisson process.
We propose the reason for this observation has to do with the fact that we
have modeled species X and Xp as not being synthesized or degraded through
additional processes and can only be converted from one to the other (see Fig-
ure 3.37). Keep in mind that in both cases we have examined so far, we have
used NX,TOT = 100. Therefore, when the population of R is small, its relative
increase results in an equivalent increase in the probability of the transition
X → Xp (using the same argument about transition probabilities as shown in
the example of equation 3.44). However, a commensurate increase in the pop-
ulation size of Xp cannot occur because 1) the reverse reaction (Xp → X) is
much faster than the forward one (kr = 10kf ), especially as NXp(t) is close to
NX,TOT ; and 2) NX,TOT is a ceiling for the values NXp(t) can have when NR(t)
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is low. Thus, the population size of Xp cannot fluctuate to the extent that R’s
regulatory effect would indicate and the time trajectory of Xp has a reduced
noise profile.

Finally, we show an additional case (Figure 3.40; case 3) for the purpose of
better visualizing how dramatic these persistent fluctuations can be. We have
used a set of parameters (listed in the figure) that results in a steady-state
value of the response element being an order of magnitude higher than in case
1 (N∗

R = 519.7). We only show a sample time course for this case where the
amplitude and irregularity of the fluctuations in NR are clearly visible. Note
that this case is closely related to case 1, in that the fixed point is a stable
spiral. Thus, perturbations routinely cause a stochastic trajectory to take a
long excursion around the fixed point (as shown in Figure 3.38d).

We also point out that we have qualitatively reproduced all of our results
in cases 1-3 using Gillespie’s algorithm (using the software package StochSS;
Drawert et al., 2016). Therefore, our observations are not specific to the imple-
mentation of the ABK algorithm as compared to the SSA, and the algorithmic
framework we have presented in this work is consistent with the predictions the
SSA makes for systems composed of homogeneous populations.

We conclude that noise-induced excursions around the fixed point can result
when a stable spiral is deterministically predicted in the dynamics of the system.
We term this phenomenon persistent high-amplitude fluctuations (PHAF).20 By
“high-amplitude,” we mean relative to the intrinsic noise that a population’s
steady-state size would exhibit if considered as a consequence of a Poisson pro-
cess (as shown in Figure 3.38c). We deliberately do not use the term “oscil-
lations” to describe this effect because of the irregularity in the observed am-
plitude and time interval between successive population size crests or troughs.
This behavior is particularly sensitive to intrinsic noise in the low copy number
population size of a species involved in regulatory interactions.

The phenomenon we have observed is reminiscent of coherence resonance,
where an optimal level of noise produces coherent oscillations (El-Samad and
Khammash, 2006). However, our present observations only depend on the in-
trinsic noise of the involved processes since we have not added any tunable
sources of extrinsic noise in the above computational studies. We also do not
consider our results to be an example of stochastic resonance, where noise can
be beneficial in the detection of an output signal (for a review that discusses
the more recent and broader definition of this phenomenon, see McDonnell and
Abbott, 2009). Furthermore, stochastic resonance does not occur because the
system resonates at a particular frequency, but rather there is a noise-induced
signal enhancement. Instead, we believe that our observations are more in
line with those made by McKane et al. (2007), who argue that this is a true
resonance phenomenon: assuming the intrinsic noise is white (i.e., is Gaussian-
distributed and with constant power for all frequencies), it includes the system’s
natural resonant frequency, which results in the amplification of fluctuations in

20Some authors refer to this phenomenon as noise-induced oscillations (e.g., Thomas et al.,
2013).
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Figure 3.39 – Negative feedback 2-component motif: time course (case 2). We used
the ABK algorithm to model the time evolution of the motif shown in Figure 3.37 with
kinetic constants kb = 0 sec−1, ks = 0.300 sec−1, kd1 = 0 sec−1, kd2 = 0.005 sec−1,
kf = 0.10 sec−1, kr = 1.000 sec−1, and Michaelis constants KM,f = KM,r = 10. We used
a constant signal population size NS = 30, initial population sizes NR,i = 0, NXp,i = 0,
and NX,T OT = NX(t) +NXp(t) = 100. We simulated this motif for a total time of 500 sec
with fixed time step increments of ∆t = 0.01 sec. Stability analysis: fixed point N∗

R = 19.7,
N∗

Xp = 91.5; eigenvalues: λ1 = −0.4460, λ2 = −0.0703. a) Average time trajectories
(n = 500) of the populations NR and NXp (blue and red curves respectively) along with
their one-standard-deviation envelopes (gray dashed curves). The deterministic trajectories
are also shown (labeled “DE” in the legend). b) Sample ABK simulation run. c) Comparison
of the coefficient of variation, η(t), for each of the species with ηP (t) for a Poisson process.
The trajectory of species Xp shows a significantly smaller deviation from its mean than
expected. d) Phase plane for this motif. The deterministic trajectory does not spiral into
the fixed point at the intersection of the two nullclines. Therefore, a stochastic trajectory
cannot take an excursion around the fixed point. The deterministic direction field is depicted
as green arrows.
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Figure 3.40 – Negative feedback 2-component motif: time course (case 3). We show
a single ABK simulation run of the same motif as in Figure 3.38, with kinetic constants
kb = 0 sec−1, ks = 0.300 sec−1, kd1 = 0 sec−1, kd2 = 0.001 sec−1, kf = 0.0015 sec−1,
kr = 0.800 sec−1, and Michaelis constants KM,f = 30, KM,r = 1. We used a constant
signal population NS = 30, initial population sizes NR,i = 0, NXp,i = 0, and NX,T OT =
NX(t) + NXp(t) = 1000. We simulated this motif for a total time of 5000 sec with fixed
time step increments of ∆t = 0.01 sec. Deterministic analysis: fixed point N∗

R = 519.7,
N∗

Xp = 17.3; eigenvalues: λ1,2 = −0.00985±0.02648i. The stochastic trajectory of species
R shows persistent high-amplitude fluctuations from its mean. We note that the average
trajectory agrees with the deterministic trajectory (plot of average trajectories not shown).

the population sizes. The same authors go on to perform simulations and the-
oretically show that these amplified fluctuations occur in systems with finite
population sizes (i.e., away from the thermodynamic limit) when damped os-
cillations are deterministically predicted. It is also noteworthy that Vilar et al.
(2002) made similar in silico observations of (intrinsic-)noise-induced persistent
fluctuations/oscillations. Importantly, this phenomenon has been observed in
an experimental setting (e.g., Geva-Zatorsky et al., 2010).

In this work, we will see additional instances of PHAF in the case of the
3-component negative feedback loop (subsection 3.5.3) and a variant of the
predator-prey competition model (subsection 3.6.1). We hope that this investi-
gation will inspire and inform further efforts toward the experimental verification
of the presence of such effects.
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3.5.2 Negative Feedback 2-Component Motif with Explicit
Time Delay

A delay, or time lag, within a feedback loop has been observed in real populations
of living organisms to cause stable oscillations or irregular fluctuations about an
equilibrium population size (for a summary of the latter behavior in an ecological
context, see Krebs 1972, pp. 201-202). A time delay means that a species
population changes at a rate that is dependent on population sizes at some time
in the past, therefore the involved processes are non-Markovian. It is well-known
that such time delays can cause a (molecular) system to repeatedly overshoot
and undershoot a steady-state value, thereby producing oscillations (Novák and
Tyson, 2008; Bratsun et al., 2005). Time delays can be specified explicitly for
a given set of processes, but in reality are implicit because of some limitation
that a natural system may be subjected to (for instance, diffusion of molecules
across cellular compartments, or the presence of many intermediate species in a
long sequential or cyclical set of processes). Given the role that delays may play
in producing oscillatory behavior, we first investigate the effect of introducing
an explicit time delay into the simulation of the negative feedback 2-component
motif.

We now show how to account for the non-Markovian nature of a process
with delay while using the ABK algorithm. We specifically use a time delay δ
in the negative feedback reaction where Xp promotes the degradation of R (see
Figure 3.37).21 To clarify what we mean, the (partial) differential equation for
the population NR(t) can be rewritten (see equation 3.41 for comparison) as

∂NR(t, δ)
∂t

= (kb + ksNS) −
(
kd1NR(t) + kd2NR(t) NXp(t − δ)

)
, (3.45)

where we have highlighted in bold the term with the time delay. The expression
for dNXp/dt is the same as in equation 3.42 since there are no time delays in it (by
assumption). We have also noted all time-dependent terms in this differential
equation to further emphasize that only the rate of change in NR depends on
the size of the Xp population at a previous time point t− δ.

Given this explicit time delay, the probability (Pdif ) that each agent of
species R is degraded in a 2nd order process with rate constant kd2 is

PR+Xp→∅(t, δ) = kd2NXp(t− δ) ∆t , (3.46)

for t > δ.22

We show the results of simulating this motif for a total of 2000 sec with a
time delay of fixed duration δ = 50 sec in Figure 3.41 (all other parameters are
identical to those in Figure 3.38). Panel a shows a representative sample run of
the simulation that reveals oscillations of higher amplitude and regularity that
those in Figure 3.38b. Therefore, incorporating an explicit time delay in the

Follow this link to
see the Matlab code.

21The choice of only this reaction having a time delay is purely arbitrary and made for the
purpose of demonstrating the versatility and extensibility of the ABK algorithm in simulating
a diverse array of modeling studies or in silico experiments.

22As noted in subsection 2.3.2, the Pber probability expression can also be used. The kinetic
complementarity factor (KCF; see section 2.6) is ΩR(t) = kd2NXp(t− δ).

147

https://github.com/alexplaka/ABK/tree/master/Homogeneous_Pops/7a_NegFb_Osc_2comp_delay/


agent-based stochastic simulation results in robust oscillations for a motif that
cannot have stable oscillations in the absence of a delay. Panel b shows that
the average time trajectories of the populations are decaying oscillations. The
apparent decay is not representative of individual simulation runs, since they
show unattenuated oscillatory activity (we verified this by running simulations
of longer time periods). Instead, the apparent decay of the average trajectories
is the result of stochastic fluctuations leading to variance in the time between
successive peaks, essentially producing small phase differences in the trajectories
(dephasing) that smooth out and diminish the value of the average.

We briefly note the ease with which the ABK algorithm can be altered to
account for variability in the make-up of a population. In our example above,
we treated all R agents identically in that the transition probability of each
agent has the same dependence on δ. However, having only a subset of R
agents be sensitive to a delay can be easily implemented using our algorithm.
Furthermore, it is possible to specify a different value of δ for each R agent, or
to have δ sampled from a user-specified statistical distribution (we will present
these cases in the next chapter, section 4.11). Thus, one can easily model a
population that is heterogeneous with respect to a delay parameter (we will
extend this idea to any parameter the system depends on in Chapter 4).

The example we have presented in this subsection shows that a modeler can
easily implement explicit time delays using the ABK algorithm. As we will see in
the next subsection, introducing additional intermediate species in the feedback
loop is an implicit form of time delay that also leads to stable oscillations.
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Figure 3.41 – Negative feedback 2-component motif with delay: time course. We used
the ABK algorithm to model the time evolution of the negative feedback 2-component motif
with an explicit time delay of δ = 50 sec in the feedback reaction (R + Xp → ∅). All
other parameters are the same as those in Figure 3.38, except we simulated the system for
2000 sec. The first 50 sec of the trajectories were simulated without the time delay in the
ABK (solid curves) and deterministic trajectories (dashed curves). The latter were evaluated
by solving the ODE for the initial 50 sec, then obtaining the numerical solution to the set of
delay differential equations, or DDEs, using the initial 50 sec period as history. a) Sample
time trajectory. b) Average population sizes after 100 repetitions of the simulation. The
gray dashed curves denote the one-standard-deviation envelope for <NR(t)>.

149



3.5.3 Negative Feedback 3-Component Motif
We now explore the same negative feedback loop as the one presented in the
preceding subsection, but with an additional component, species W . Such a
3-component motif is theoretically capable of stable oscillations (i.e., a limit cy-
cle) and has been used in the proof-of-principle design of a synthetic oscillatory
network of three transciptional repressors, termed “the repressilator” (Elowitz
and Leibler, 2000). The presence of an additional component is a way of in-
troducing an implicit time delay to the feedback loop such that the response
element’s change in population size effectively depends on the negative effector’s
population level at a previous time. This is a well-known criterion for generating
an oscillatory response in chemical and biological systems (Novák and Tyson,
2008). We show the processes and regulatory interactions in this 3-component
motif below (Figure 3.42).

Figure 3.42 – Negative feedback 3-component motif. R promotes the conversion of W
to Wp, which in turn promotes the production of Xp that has an inhibitory effect on R by
promoting its degradation (or, alternatively, by inhibiting R’s synthesis; not shown). Thus,
an overall negative feedback loop is formed where R ultimately promotes its own degradation
by regulating two intermediate species, W and X. The signal, S, enhances the synthesis of
R and we assume that the population size of S, NS , remains constant. The rate constants
are indicated in the figure. kb and ks are the basal 0th and 1st order (with respect to S)
rate constants for the synthesis of R, respectively. Similarly, kd1 and kd2 are the basal 1st

order (with respect to R) and overall 2nd order (1st order with respect to each, R and Xp)
rate constants for the degradation of R, respectively. We assume that the interconversions
between W and Wp as well as X and Xp follow Michaelis-Menten kinetics and that no
further synthesis and degradation processes occur for species W/Wp and X/Xp. That is,
NW,T OT = NW (t) +NW p(t) = constant and NX,T OT = NX(t) +NXp(t) = constant.

The system can be deterministically analyzed with the following set of dif-
ferential equations,
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dNR
dt

= (kb + ksNS) − (kd1NR + kd2NRNXp) (3.47)

dNWp

dt
= k′

fNR
NW,TOT −NWp

KM,f + (NW,TOT −NWp)
− k′

r

NWp

KM,r +NWp
(3.48)

dNXp
dt

= kfNWp
NX,TOT −NXp

K ′
M,f + (NX,TOT −NXp)

− kr
NXp

K ′
M,r +NXp

, (3.49)

where we have made the same assumptions as in the 2-component case. We ini-

Follow this link to
see the Matlab code.

tially consider this motif with kinetic constants kb = 0 sec−1, ks = 0 .400 sec−1,
kd1 = 0 sec−1, kd2 = 0.001 sec−1, kf = k′

f = 0.010 sec−1, kr = k′
r = 1.000 sec−1,

Michaelis constants KM,f = K ′
M,f = 10 = KM,r = K ′

M,r, a constant signal pop-
ulation NS = 10, initial population sizes NR,i = 0, NWp,i = 100, NXp,i = 100,
total population of species X/Xp, NX,TOT = NX(t) + NXp(t) = 250, and for
species W/Wp, NW,TOT = NW (t) + NWp(t) = 250. Given these parameters,
a single stable fixed point is deterministically predicted with population values
N∗
R = 93.65, N∗

Wp = 86.81, N∗
Xp = 43.14. Linearization around this point gives

the eigenvalues λ1 = −0.047342, λ2,3 = −0.00045305 ± 0.013501i. Thus, we
qualitatively predict damped oscillations as the trajectory to the fixed point.

We simulated the time evolution of this motif using the ABK algorithm and
we show the average time trajectories (n = 200) of populations R, Wp, and
Xp in Figure 3.43a. For clarity, panels b, c, and d separately show each of
the average population trajectories with their one-standard-deviation envelope,
along with the deterministic prediction obtained from the numerical integration
of the system of differential equations presented above. The oscillations in the
average trajectories appear to decay faster than in the deterministic solution.
We attribute this to the effect of noise in dephasing the oscillatory activity
in individual simulation runs (especially after the first full oscillation in the
system’s time evolution; see Figure 3.44). We note that the role of stochasticity
in dephasing oscillator systems controlling the cell cycle of individual cells has
been experimentally observed (Di Talia et al., 2007).

Figure 3.44 is identical to 3.43, except it shows the results of a sample simu-
lation run. We again observe high-amplitude, irregular, and persistent fluctua-
tions (PHAF: see subsection 3.5.1) even as the oscillatory behavior is determin-
istically predicted to decay and for arbitrarily long periods of time (only shown
here for t ≤ 5000 sec). The fact that we have made similar observations in the
2- and 3-component feedback loops supports our proposal that noise affects the
dynamics of the system such that it continuously over/under-shoots the fixed
point, while the intrinsic delay due to the presence of the additional interme-
diate W/Wp amplifies the effect. Note that sustained oscillations have been
observed in the stochastic simulation of a genetic circadian oscillator model (us-
ing Gillespie’s algorithm; Vilar et al., 2002), where the deterministic prediction
is fast decay to a stable fixed point (see Figure 5 in Vilar and coworkers’ study).
Combined with our studies, these results highlight the potential effect of noise
on intracellular regulation. In this case, noise may increase the robustness of
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the oscillatory regime by expanding the region in parameter space where stable
oscillations are possible for a given level of noise.

Finally, there is a discrepancy between the simulation results and the deter-
ministic trajectory shown in Figure 3.43d. The midpoint of the oscillation range
in the average population size of species Xp, <NXp(t)>, is consistently higher
than the deterministic one. We have thoroughly inspected and verified that the
code used in the implementation of the algorithm is correct. One possible expla-
nation emerges from Figure 3.44d. The high-amplitude oscillations/fluctuations
in NXp(t) cannot extend symmetrically from the true equilibrium population
size because it is rather close to zero (i.e., N∗

Xp = 43.14, which is less than
the apparent oscillation amplitude). Accordingly, < NXp(t) > has a greater
value than expected. For comparison, we also show the average time course
for the species in this motif, simulated with the same set of parameters except
for NS = 30 and NS = 50 (Figures 3.45 and 3.47). The difference between the
stochastic and deterministic trajectories of Xp decreases as NS increases (the fit
is nearly perfect for NS = 50). However, further work will be required to deter-
mine if this discrepancy is due to the inherent dynamics of the system. Others
have attributed the observation of similar effects in computational experiments
to the presence of noise (Paulsson et al., 2000).
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Figure 3.43 – Negative feedback 3-component motif: average time course, NS = 10.
We used the ABK algorithm to model the time evolution of the motif shown in Figure 3.42
with kinetic constants kb = 0 sec−1, ks = 0 .400 sec−1, kd1 = 0 sec−1, kd2 = 0.001 sec−1,
kf = k′

f = 0.010 sec−1, kr = k′
r = 1.000 sec−1, and Michaelis constants KM,f = K′

M,f =
10 = KM,r = K′

M,r. We used a constant signal population NS = 10, initial population
sizes NR,i = 0, NW p,i = 100, NXp,i = 100, NX,T OT = NX(t) + NXp(t) = 250, and
NW,T OT = NW (t) + NW p(t) = 250. We simulated this motif for a total time of 5000 sec
with fixed time step increments of ∆t = 0.02 sec. a) Plot of the average time trajectory
(n = 200) of the populations NR, NW p, NXp (blue, green and red curves, respectively).
b-d) Separate plots of the average time trajectories for each of the species R, Wp, Xp,
along with their one-standard-deviation envelopes (gray dashed curves). The deterministic
trajectories are also shown (labeled “DE” in the legend).
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Figure 3.44 – Negative feedback 3-component motif: sample time course, NS = 10. We
show a sample simulation run with the same parameters as in Figure 3.43. The population
time trajectories are representative of the high-amplitude irregular fluctuations that persist
even as the deterministic solution decays to an equilibrium value.
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Figure 3.45 – Negative feedback 3-component motif: average time course, NS = 30. We
used the same parameters as indicated in Figure 3.43, except NS = 30. Stable fixed point:
N∗

R = 97.58, N∗
W p = 100.95, N∗

Xp = 123.06. Linearization around this point gives the
eigenvalues λ1 = −0.12363, λ2,3 = −0.00086808 ± 0.0083141i. The eigenvalues indicate
that the decay to the stable fixed point is faster than in the case of NS = 10.
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Figure 3.46 – Negative feedback 3-component motif: sample time course, NS = 30. We
show a sample simulation run with the same parameters as in Figure 3.45. The population
time trajectories are representative of the high-amplitude irregular fluctuations that persist
even as the deterministic solution decays to an equilibrium value.
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Figure 3.47 – Negative feedback 3-component motif: average time course, NS = 50. We
used the same parameters as indicated in Figure 3.43, except NS = 50. Stable fixed point:
N∗

R = 98.85, N∗
W p = 115.28, N∗

Xp = 202.33. Linearization around this point gives the
eigenvalues λ1 = −0.20252, λ2,3 = −0.0023036 ± 0.0060281i. The eigenvalues indicate
that the decay to the stable fixed point is faster than in the case of NS = 30.
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Figure 3.48 – Negative feedback 3-component motif: sample time course, NS = 50. We
show a sample simulation run with the same parameters as in Figure 3.47. The population
time trajectories are representative of the high-amplitude irregular fluctuations that persist
even as the deterministic solution quickly decays to an equilibrium value.
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3.5.4 Activator-Inhibitor Motif
We now present another motif that is capable of producing oscillatory activity or
excitability. The latter term refers to a system’s ability to take a large-amplitude
excursion into its phase space and subsequently return to its initial state. In
the context of transient cellular differentiation, this motif has been shown to be
responsible for the onset and exit of Bacillus subtilis from a competent state
that allows the bacterium to take up exogenous DNA from its surroundings (Süel
et al., 2006; Cagatay et al., 2009).

The motif we consider here consists of two modules: a) a mutual activation
module where R and Ep stimulate each other’s synthesis (this is the exact
same motif as presented in subsection 3.3.3 that results in a bistable hysteretic
switch), and b) R also stimulates the synthesis of species X that acts as an
inhibitor to R (negative feedback loop; see Figure 3.49 below).

Figure 3.49 – Activator-inhibitor motif. The indicated processes involving species S, R,
and E/Ep are identical as in the mutual activation hysteretic switch motif presented in
Figure 3.23. The inhibitory part of this motif involves speciesX, whose synthesis is stimulated
by R, while X promotes the degradation of R. This combination of the mutual activation
module and the inhibition of R by X can produce oscillatory behavior for the right set of the
system’s parameters.

We consider here the case where X inhibits R by promoting its degradation
(although explicit inhibition of R’s synthesis is also possible). Moreover, the
diagram indicates two transitions for the degradation of R: a 1st order process
with respect to R and rate constant kd1 that can be thought of as the basal rate
of R’s degradation (i.e., it reflects the “leakiness” of the overall degradation
process given an intrinsic average finite lifetime of an agent of species R), and a
2nd order process (1st with respect to R and X respectively) with rate constant
kd2. We further assume that the species from which the green arrows originate
(the effectors) are not consumed in the processes they regulate.

We can reason why this motif can produce oscillatory activity as follows: the
bistable switch established by the mutual activation between R and Ep (with S
providing constant forcing) leads to either a high or low population level ofR. As
NR increases so does the population of X (since the former promotes the latter’s
synthesis), which in turn increases R’s degradation rate thereby decreasing its
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population. But as NR gets low, so does NX (X gets degraded faster than
it is synthesized), thus allowing R to rebound and this cycle of interactions
continues. However, one must tune the system’s parameters to observe these
oscillations. Here, we do not discuss the mathematics of determining the set of
parameters for which a Hopf bifurcation occurs (the point in parameter space
where a stable oscillation, or limit cycle, appears). Instead, we use a parameter
set that leads to decaying oscillations and employ the ABK algorithm to model
this motif for small populations of the involved species.

First, we show the system of differential equations that can be inferred from
the motif’s elementary processes shown in Figure 3.49.

dNR
dt

= (kbNEp + ksNS) − kd1NR − kd2NRNX (3.50)

dNEp
dt

= krNR
NE,TOT −NEp

KM,r + (NE,TOT −NEp)
− kf

NEp
KM,f +NEp

(3.51)

dNX
dt

= k′
bNR − k′

dNX (3.52)

We assume that the conversion between E and Ep follows Michaelis-Menten

Follow this link to
see the Matlab code.

kinetics and that NE,TOT = NE(t) + NEp(t) = constant. We show in Fig-
ure 3.50 the results of numerical integration of this system of equations (the
deterministic time trajectory) and using the ABK methodology for this motif
with the parameters kb = 0.01 sec−1, ks = 0.05 sec−1, NS = 15, kd1 = 0.0 sec−1,
kd2 = 0.0075 sec−1, NE,TOT = 100, kf = 1 sec−1, kr = 0.05 sec−1, KM,f = 5,
KM,r = 10, k′

b = 0.001 sec−1, k′
d = 0.01 sec−1, and initial population sizes

NR,i = 0, NEp,i = 100, NX,i = 0. Numerical integration of the differential equa-
tion results in an attracting spiral fixed point with N∗

R = 47.37, N∗
Ep = 93.31,

N∗
X = 4.74 (eigenvalues λ1,2 = −0.021038 ± 0.014763i, λ3 = −0.08904; the de-

caying oscillations are hardly visible in the deterministic trajectories shown in
the figure, but are indeed present). The average time trajectories from the ABK
simulation (n = 500; panel a) show excellent agreement with the deterministic
curves. Panel b shows a sample trajectory revealing persistent high-amplitude
fluctuations for all three population sizes, and are especially pronounced for
NR(t). Note that NE,TOT = 100 agents, which means that these fluctuations
can only extend into the lower population sizes for NEp since its steady state
is already close to NE,TOT . This results in the ABK-simulated < NEp(t) >
appearing slightly smaller that the deterministic solution to NEp (this is similar
to what we saw in the 3-component negative feedback motif in the preceding
section; see Figure 3.43). Notice that the population NX stays in the single-digit
range (near its fixed point) and is susceptible to changes in NR (R stimulates
the production of X). In addition, the low copy number of NX makes it es-
pecially sensitive to perturbations due to noise, resulting in commensurately
large changes in NR since X stimulates the degradation of R. For instance,
if NX(t) = 2 for some time t and over a small time interval τ the popula-
tion increases by only two agents (i.e., NX(t + τ) = 4), then the per-R-agent
probability of a degradation event (through the process with rate constant kd2)
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Figure 3.50 – Activator-inhibitor motif: average and sample time trajectories. We simu-
lated the motif (Figure 3.49) for 2500 sec with fixed time step increments of ∆t = 0.02 sec.
Parameters: kb = 0.01 sec−1, ks = 0.05 sec−1, NS = 15, kd1 = 0 sec−1, kd2 =
0.0075 sec−1, NE,T OT = 100, kf = 1 sec−1, kr = 0.05 sec−1, KM,f = 5, KM,r = 10,
k′

b = 0.001 sec−1, k′
d = 0.01 sec−1. Initial population sizes: NR,i = 0, NEp,i = 100,

NX,i = 0. a) The average time trajectory of the species populations NR, NEp, and NX

after 500 repetitions of the ABK simulation are shown in thick solid lines. The dashed
curves correspond to the solution of the differential equations describing this motif. The
one-standard-deviation envelope for the population of R, NR, is also shown (gray dashed
curves). b) A sample time trajectory of the population sizes are superimposed on the solution
to the differential equations (obtained through numerical integration). We again observed
high-amplitude irregular fluctuations for species R.
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doubles. That is, for our example,

Pdif,R(t+ τ)
Pdif,R(t) = kd2NX(t+ τ)

kd2NX(t) = 2 , (3.53)

and the population of R would decrease accordingly (this is the same argument
as presented in subsection 3.5.1 leading to equation 3.44).

We also plot the coefficient of variation, η, for each of the species in Fig-
ure 3.51. The noise we observe in our simulations is greater for species R than
expected for a Poisson process, while the opposite is true for species X (we made
similar observations when studying the 2-component negative feedback motif;
see Figures 3.38c and 3.39c).
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Figure 3.51 – Activator-inhibitor motif: coefficient of variation. Comparison of the coeffi-
cient of variation, η(t), for each of the species with its predicted value, ηP (t), assuming a
Poisson process. The trajectory of species R shows a significantly larger deviation from its
mean than deterministically expected, while the average trajectory of X is less noisy than
Poissonian statistics would predict.

As we saw in the preceding subsection on negative feedback loops, regulatory
interactions mediated by species with small population sizes can lead to large
fluctuations in the populations sizes of other species, even when the system’s
parameters do not explicitly allow for the presence of a deterministic limit cycle.
The present case appears to be yet another example of an excitable system
exhibiting persistent high-amplitude fluctuations.

162



3.5.5 Substrate-Depletion Motif
The substrate-depletion motif, shown in the figure below, can also produce
oscillations. The substrate is species X in the sense that it can be converted
to R, while R and Ep form a mutual activation loop. When the population
of X is large, a surge of R production ensues and the pool of X agents gets
depleted. As the production of R slows down and its population decreases
through degradation, X rebounds again and the cycle continues.

Figure 3.52 – Substrate-depletion motif. Species S promotes the synthesis of the substrate
X that is converted to R. Species R and Ep form a positive feedback (mutual activation)
loop. The right combination of parameter values can produce oscillatory behavior in this
motif.

The set of differential equations for this motif is

dNR
dt

= (kc1NX + kc2NXNEp) − kdNR (3.54)

dNEp
dt

= krNR
NE,TOT −NEp

KM,r + (NE,TOT −NEp)
− kf

NEp
KM,f +NEp

(3.55)

dNX
dt

= (kb + ksNS) − (kc1NX + kc2NXNEp) . (3.56)

Notice that the conversion of X to R is achieved through two processes: the 1st

order conversion X → R with rate constant kc1 (the effective basal conversion
rate) and the 2nd order transition X + Ep → R with rate constant kc2 (we
are assuming that Ep is not consumed in this process). As in previous cases,
we also assume that E and Ep are not synthesized nor degraded via processes
beyond the indicated Michaelis-Menten conversion between the two. Therefore,
NE,TOT = NE(t) +NEp(t) = constant.

Follow this link to
see the Matlab code.

We simulated this motif using the ABK algorithm and compared the results
we obtained to the numerical solution of the system of differential equations pre-
sented above. We used the parameters kb = 0.00 sec−1, ks = 0.5 sec−1, NS = 10,
kc1 = 0.001 sec−1, kc2 = 0.00903225 sec−1, kd = 0.1 sec−1, NE,TOT = 100,
kf = 1 sec−1, kr = 0.005 sec−1, KM,f = 5, KM,r = 10, and initial pop-
ulation sizes NR,i = 0, NEp,i = 100, NX,i = 0. Given these values, the
motif is deterministically predicted to have a single fixed point at N∗

R = 50,
N∗
Ep = 1.468, N∗

X = 350.644, with eigenvalues λ1,2 = ±0.0270i, λ3 = −0.234
(the real component of the complex pair of eigenvalues is approximately zero:
Re(λ1,2) < 1 × 10−9). We chose kc2 to have this particular value (shown to 6
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significant figures) because it makes the real component of λ1,2 effectively zero
given the other aforementioned kinetic parameters, thus producing a limit cycle
whose amplitude decays only according to the exponential e−λ3t. The result
is a deterministic time trajectory with sizable oscillations in the order of 105

seconds of simulated time.
We employed the ABK algorithm and simulated this motif for 2500 sec with

fixed time step increments of ∆t = 0.02 sec. We show a sample and average
(n = 200) time trajectory of species R in Figure 3.53. Note that we do not show
all three species in the same plot because they oscillate around population sizes
of different orders of magnitude: NEp(t) oscillates in the single-digit population
size regime, while NX(t) wildly oscillates from as little as 20 to 1200 agents in
our simulations.

Our observations for this motif are similar to those presented in the pre-
ceding subsections on other oscillator systems. The population of R is not just
dependent on the oscillatory trajectory inherent to the dynamics of the system,
but also on random fluctuations that can profoundly affect the probability of
transitions involving the low copy number population NEp in the 2nd order con-
version of X to R. This results in larger than predicted oscillations in NR (in
fact, they would best be characterized as “spikes”; see Figure 3.53a), with the
time interval between oscillations showing some variance (we performed spec-
tral analysis on the data confirming this variation in the frequency domain; see
Figure 3.53c). A simulated time trajectory thus appears at times out-of-phase
compared to the deterministic solution. This is in agreement with our previous
observations that stochasticity can lead to dephasing of individual simulation
runs. The irregularity in the frequency and amplitude of the oscillations/spikes
results in an average trajectory (Figure 3.53b) that appears aperiodic and noisy.
Finally, we also plot the coefficient of variation, η(t), which confirms that the
high-amplitude oscillations make the average trajectory of R have a far greater
variance than expected for a Poisson process.
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Figure 3.53 – Substrate-depletion motif: sample and average time trajectories. We an-
alyzed the substrate-depletion motif (Figure 3.52) using the ABK algorithm. Parameters:
kb = 0.00 sec−1, ks = 0.5 sec−1, NS = 10, kc1 = 0.001 sec−1,kc2 = 0.00903225 sec−1,
kd = 0.1 sec−1, NE,T OT = 100, kf = 1 sec−1, kr = 0.005 sec−1, KM,f = 5, KM,r = 10.
ABK simulation parameters: 2500 sec of simulated time with fixed time step increments of
∆t = 0.02 sec. Initial population sizes: NR,i = 0, NEp,i = 100, NX,i = 0. In the interest of
clarity, we show the results only for species R (X and Ep show similar behavior). a) Sample
time trajectory, NR(t), using the ABK algorithm superimposed on the numerical solution to
the system of differential equations (DE). b) Average time trajectory <NR(t)> (n = 200).
The gray dashed curve is the mean plus one standard deviation. c) Power spectrum of a
time trajectory (t = 500 − 2500 sec) in a sample ABK simulation run. The horizontal axis
represents frequency in units of mHz. A periodic population trajectory corresponds to a
peak at a finite frequency in the spectrum. The vertical red line shows the theoretically
predicted oscillation frequency, obtained through the imaginary component of the eigenval-
ues, Im(λ1,2)/2π = 0.0270/2π = 4.30 mHz, corresponding to a period of approximately
233 sec. d) Comparison of the coefficient of variation, η(t), for species R with that of a
Poisson process, ηP (t). The trajectory of species R shows a significantly larger deviation
from its mean than expected.
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3.6 Other Models
We end this chapter with implementing the ABK method to a handful of models
whose utility lies in their mathematical simplicity. We first discuss two species
competition models: the Lotka-Volterra model of predator-prey interactions and
the Kermack-McKendrick model of infectivity spread. In the former case, our
simulations correctly predict oscillatory activity, while, in the latter, we discuss
how the occurrence of a species extinction event, an absorbing state of the dis-
crete dynamics (a system state that does not change once it is reached), affects
the average population time trajectories obtained from an ensemble of ABK
simulations. Finally, we present a much-studied model of oscillations originally
proposed as an analogue of oscillating chemical systems: the Brusselator. This
is an interesting case study because relaxation oscillations are predicted for the
right set of kinetic parameters. Our simulations indeed reproduce this general
behavior and show that our methodology can effectively model processes oper-
ating at different time scales. As a side note, the original form of the Brusselator
includes an arguably unrealistic termolecular process. We address this by sim-
ulating a more realistic version of the Brusselator, which comprises only up to
2nd order processes.

3.6.1 The Lotka-Volterra Predator-Prey Model
We now discuss a well-known model of competition between a predator and a
prey species that leads to oscillations in their respective population sizes. The
usefulness in considering this model is its generality: the idea of competition
can be used to describe a variety of phenomena beyond organismal ecology. For
instance, the interplay between immune system cells and virus particles in an
infected patient, or the sales of competing retail formats (Hung et al., 2017),
are both examples of applying the model to a diverse array of situations.

The model, proposed independently by the mathematicians Alfred Lotka
and Vito Volterra (Lotka, 1925; Volterra, 1926) almost a century ago, is simple
and not meant to strictly represent elementary interactions between agents of
the two species. It is therefore a phenomenological model that correctly predicts
oscillatory dynamics but also has other weaknesses making it unsuitable for use
in describing the dynamics of real populations (we will expose some of these
shortcomings in the discussion that follows). Even so, we interpret the model in
terms of agent interactions using the ABK methodology to show that it agrees
with the deterministic predictions while also allowing for more realistic scenarios
such as extinction events due to stochastic fluctuations in small population sizes.

We consider agents of two species, R (the prey; e.g., rabbits) and F (the
predators; e.g., foxes). We will use the kinetic rate constants kb, kd, k′

b, k′
d,

where the subscripts b and d refer to the birth and death processes of a species.
We define the following processes to describe the intra- and interspecies agent
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interactions (equivalently stated, the model’s mechanism):

R
kb−→ 2R (3.57)

R+ F
kd−→ ∅ + F (3.58)

R+ F
k′

b−→ R+ 2F (3.59)

F
k′

d−→ ∅ . (3.60)

It is our aim to define these elementary processes in a way that makes sense
for the system at hand. The first two processes describe the birth and death
of R, respectively. kb is 1st order kinetic constant representing the intrinsic
growth rate of species R, where agent R gives “birth” to another agent of the
same species. On the other hand, kd is a 2nd order constant reflecting the
stoichiometric relationship between R and F leading to the consumption of R
(alternatively, one can imagine a fox killing a rabbit).23 Similarly, the latter
two processes describe the birth and death of F , with k′

b and k′
d being a 2nd

and 1st order constant respectively. The process 3.59 describing the birth of F
depends on R but does not directly involve its consumption. Considering this
assumption at the level of populations, it means that the growth of species F
depends on the population size of R. Intuitively, the predator’s growth rate
correlates with the availability of prey. Finally, the disappearance of F is a 1st

order degradation process.
This set of processes leads to the 2-dimensional set of differential equations,

dNR
dt

= kbNR − kdNRNF (3.61)

dNF
dt

= k′
bNRNF − k′

dNF , (3.62)

where NR and NF denote the discrete and time-dependent size of the species
populations. Setting both equations equal to zero, we can easily obtain two
fixed points: (0, 0) and

(
k′

d

k′
b
, kb

kd

)
, where the ordered pairs represent (N∗

R, N
∗
F )

in phase/state space. We then linearize by evaluating the Jacobian matrix
at each of the two fixed points, revealing that the origin is a saddle and the
point

(
k′

d

k′
b
, kb

kd

)
a center. We are primarily interested in the latter, since closed

trajectories are predicted to occur in its vicinity. First, we must confirm that
the prediction of a center from linearization indeed results in a nonlinear center.
To show this, it suffices to find a quantity, E(NR, NF ), that is invariant through
a given trajectory24 and that the conserved quantity has an extremum at the
putative center’s coordinates in phase space (Strogatz, 2015, Theorem 6.5.1, p.
163). To find E(NR, NF ), we obtain an expression for dNR

dNF
that upon separation

of variables and integration reveals the conserved quantity

E(NR, NF ) = k′
d lnNR + kb lnNF − k′

bNR − kdNF . (3.63)
23From the perspective of population biology, notice that the model ignores the “death” of

R agents not being the result of predation (i.e., due to natural causes).
24That is, to show that this is a conservative system.
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It is then easy to show that the point
(
k′

d

k′
b
, kb

kd

)
is an extremum of E, thereby

satisfying the theorem’s requirements. We conclude that
(
k′

d

k′
b
, kb

kd

)
is a nonlin-

ear center. It is important to note this point in phase space is not enclosed
in an attracting limit cycle, but is instead a center. This means that the de-
terministic solution to the set of differential equations has a family of closed
trajectories around the center (i.e., the fixed point is neutrally stable) leading
to oscillations of differing amplitudes depending on what the initial condition
is. This is perhaps the model’s greatest weakness: it is unstable to the small-
est of perturbations. A “nudge” of arbitrary strength pushes the system to a
new closed trajectory. This has generally not been observed to be true in real
predator-prey populations where the oscillations tend to have a characteristic
amplitude. In terms of performing a stochastic simulation on this system, we
expect stochastic fluctuations to severely affect the oscillation amplitude.

The eigenvalues of the nonlinear center provide information about the fre-
quency of the deterministically predicted oscillations. These eigenvalues are
purely imaginary an depend only on the prey’s birth and the predator’s death
rate constants: λ = ±

√
kbk′

di. Thus, the predicted oscillation frequency is

f =
√
kbk′

d

2π . (3.64)

Follow this link to
see the Matlab code.

We now present an example of this model with the following parameters:
kb = 1 month−1, kd = 0.01 month−1, k′

b = 0.01 month−1, k′
d = 1 month−1.25 We

show the phase/state space in Figure 3.54a, where we plot the deterministic tra-
jectory (black curve) for a total time of 20 months, superimposed on the direction
field predicted by the differential equations 3.61 and 3.62. The trajectory moves
counterclockwise around the center, which occurs at (N∗

R, N
∗
F ) = (100, 100),

with the initial population sizes of NR,i = 70 and NF,i = 70 (red star in the
figure) being part of the closed loop. In fact, any initial condition that is not
on the axes will be part of a unique closed trajectory representing unattenu-
ated oscillations. This clarifies our earlier comment that the model is unstable:
any initial condition is part of a different loop in phase/state space. We there-
fore expect the amplitude of a trajectory obtained through simulation to be
particularly sensitive to the fluctuations inherent to a stochastic system.

We simulated the Lotka-Volterra (LV) model using the ABK methodology
using the same parameters as noted in the preceding paragraph and for a total
simulated time of 50 months with fixed time increments of ∆t = 0.01 months.
We noticed two limiting cases where stochastic fluctuations led to extinction
events: a) if the population of R dwindles to zero (i.e., R becomes extinct),26

then species F also eventually vanishes since it has no R agents to consume (co-
extinction); b) if F goes extinct, then the population of R follows unhindered

25The choice of these numerical values and time units is arbitrary and made for the purpose
of demonstrating how to model this system using ABK.

26The model dictates that the birth of an R agent depends on the presence of a “parent” R
agent (process 3.57). Therefore, if at any time during the course of the simulation NR(t) = 0,
then the species is extinct.
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Figure 3.54 – Lotka-Volterra (LV) model: phase plane and deterministic time trajectory.
a) We evaluated the velocity vector (dNR/dt, dNF/dt) at each ordered pair (NR, NF ) accord-
ing to the differential equations (DEs, equations 3.61 and 3.62) to construct the direction
field (green arrows). We also show the two nullclines obtained by setting the DEs equal
to zero. Kinetic parameters: kb = 1 month−1, kd = 0.01 month−1, k′

b = 0.01 month−1,
k′

d = 1 month−1. The center occurs at (100, 100) and the initial condition is shown as a
red star at (70, 70). The deterministic trajectory (black curve) starts at the initial condition
coordinate and traverses a closed path in the counterclockwise direction with a frequency of
f ≈ 159 × 10−3 month−1 and period T ≈ 6.28 months (calculated using equation 3.64). b)
Time-series representation of the solution to the DEs.

exponential growth. We repeated the simulation 1000 times and removed trajec-
tories that followed either of these limiting cases to assess the average behavior
of an ensemble of extinction-free trajectories. In all, we removed 343 out of
1000 repetitions of the simulation, which suggests that there is approximately a
probability of 0.35 for one or both species becoming extinct given these kinetic
parameters and initial population sizes.27 Moreover, the number of extinction
events is approximately split in half between the two cases mentioned in the be-
ginning of this paragraph. Being able to obtain an estimate for the probability
of extinction is a distinct advantage of stochastic simulations compared to their
deterministic analogue.

We show a typical extinction-free trajectory in Figure 3.55a, where a large
variation in the amplitude of the oscillations is evident. Panel b of the same
figure shows the average trajectory of the 657 extinction-free simulation trials.
The observed damping of the oscillations in the average trajectory is not repre-
sentative of the individual simulation runs. Instead, it is the result of stochastic
fluctuations, which, in addition to affecting the amplitude, lead to phase shifts in
individual trajectories that produce the observed attenuation in the aggregate.

It is instructive to perform a simulation of this model for the same parameters
but a different set of initial conditions: NR,i = 100 and NF,i = 100. The
deterministic solution shows no change in the population sizes since they start
out right at the predicted center. However, the stochastic simulation reveals

27Pooling these results with additional simulations gave 35.25% (n = 2000) as the estimate
for the frequency of an extinction event.
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that the population sizes oscillate (a sample run is shown in Figure 3.55c) with
enough variation in the amplitude, phase, and frequency of the oscillations such
that the average trajectory agrees with the deterministic prediction (panel d of
the same figure).

It is also noteworthy that the average trajectories for the two initial con-
ditions we simulated are different with regard to the oscillatory activity in the
ensemble of simulations (Figure 3.55b,d). When the initial populations are at
the center and stochastically fluctuate in its state-space neighborhood, there is
little tendency for the system to complete a cycle in the first few months of
simulated time. Even though the individual trajectories eventually settle into a
robust high-amplitude oscillatory pattern (see Figure 3.55c), they show no co-
herence, thus resulting in an average trajectory without oscillations. In contrast,
we see that in the case of NR,i = 70 and NF,i = 70, the individual trajectories
start out oscillating coherently (as evidenced by the first 10 − 20 months of the
average trajectories in Figure 3.55b) before fluctuations result in reduced phase
synchronization and attenuation of the ensemble’s observed oscillatory pattern.

The above presentation of the predator-prey competition model showcases
the ability of stochastic simulation methods to provide deeper insights in the
dynamics of phenomenological models than the deterministic approach. The
advantage of using the ABK algorithm, however, lies in allowing the study
of the effects of population heterogeneity on the system’s dynamics. We will
explore these effects in future investigations.
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Figure 3.55 – Stochastic LV model: sample and average time trajectories. We used the
ABK algorithm to simulate the Lotka-Volterra model with parameters kb = 1 month−1, kd =
0.01 month−1, k′

b = 0.01 month−1, k′
d = 1 month−1. Total simulated time: 50 months;

fixed time step increment ∆t = 0.01 months. We show here a sample and the average
time trajectory of the populations for two initial conditions: NR,i = 70 and NF,i = 70
(plots a, b), and NR,i = 100 and NF,i = 100 (plots c, d). The average population sizes
were obtained by repeating the simulation 1000 times and averaging over the extinction-free
trajectories (n = 657 in plot b, n = 701 in plot d). All simulation results are superimposed
on the deterministic solution (labeled “DE” in the legends). We also show the one-standard-
deviation envelope for <NR(t)> (gray dashed curve in panels b, d).
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The Volterra predator-prey model

We now briefly present a variation of the aforedescribed predator-prey model,
where we consider the growth of species R as density-dependent. The so-called
Volterra equations are the same as 3.61 and 3.62, except the term corresponding
to the birth of R agents includes a factor featuring the carrying capacity, K:

dNR
dt

= kbNR

(
1 − NR

K

)
− kdNRNF (3.65)

dNF
dt

= k′
bNRNF − k′

dNF .

Notice that the dNF/dt equation is the same as 3.62. It is easily seen that as
K → ∞, equation 3.65 reduces to 3.61. Importantly, the two models have dif-
ferent dynamical behavior: the Lotka-Volterra model features neutrally stable
closed orbits in phase space because of the presence of a conserved quantity
(equation 3.63), while, as we will demonstrate, the introduction of a finite car-
rying capacity rules out the possibility of limit cycles in the Volterra system.

We are interested in the nontrivial fixed point for this 2-dimensional system,
given by

N∗
R = k′

d

k′
b

(3.66)

N∗
F = kb

kd

(
1 − k′

d

k′
bK

)
. (3.67)

Note that the factor in parentheses is always positive for 0 < NR,i < K since
NR(t) → N∗

R as t → ∞ and N∗
R < K.28 Another way to state this is to

substitute equation 3.66 into the term in parentheses of equation 3.67 to get(
1 − k′

d

k′
bK

)
=
(

1 − N∗
R

K

)
> 0. (3.68)

We then perform stability analysis to assess the system’s behavior in the
neighborhood of the above fixed point. It can be shown using methods described
in Appendix C that the trace and determinant of the system’s Jacobian matrix
are

τ = −kb
k′
d

k′
bK

(3.69)

∆ = kbk
′
d

(
1 − k′

d

k′
bK

)
. (3.70)

Since all parameters in our system are positive (by definition), it follows that
τ < 0 and ∆ > 0, which ensures that the fixed point is either a stable node

28The reader can verify this by inspecting equation 3.65.
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or spiral. Distinguishing between these two possibilities can be determined by
evaluating the discriminant of the characteristic equation (see equation C.32
and its solution, C.33), such that when τ2 − 4∆ < 0 the eigenvalues will be
complex, resulting in damped oscillations. Obtaining an algebraic expression
for the discriminant, we get

τ2 − 4∆ = kbk
′
d

(
kb

k′
d

(k′
bK)2 + 4 k′

d

k′
bK

− 4
)
. (3.71)

The sign of the discriminant depends on the sign of the term in parentheses,
which can be analyzed as a quadratic function of (k′

bK)−1. Subsequently, we
obtain the condition for a stable spiral,

K >

[
2k′
b

kb

(√
1 + kb

k′
d

− 1
)]−1

. (3.72)

For the same kinetic parameters as the ones we used in the Lotka-Volterra model
(kb = 1 month−1, kd = 0.01 month−1, k′

b = 0.01 month−1, k′
d = 1 month−1), the

right side of the above inequality evaluates to 120.71. Therefore, any value for
the carrying capacity above this threshold will yield damped oscillations, as
can be clearly seen in the phase plane of the Volterra system with K = 500
(Figure 3.56). It is evident by comparing this figure to 3.54a that the NR
nullcline now has a nonzero slope and N∗

F = 80 (as opposed to 100 in the Lotka-
Volterra case). Examining equation 3.67, it is clear that N∗

F → 100 as K → ∞,
which agrees with our earlier assertion that the Volterra system converges to
the Lotka-Volterra one as the carrying capacity becomes infinite.

Follow this link to
see the Matlab code.

We continue by performing an ABK simulation of this model, as shown
in Figure 3.57. Panel a shows the species trajectories for a single simulation
run, revealing that persistent high-amplitude fluctuations (PHAF) occur for
this system. This is in agreement with our previous observations on oscillatory
systems with stable spiral fixed points (see section 3.5). Meanwhile, the average
of the trajectories from an ensemble of simulations (n = 1000) agrees with the
deterministic expectation (panel b). As we have done before, we can verify the
presence of high-amplitude fluctuations by plotting the coefficient of variation
for both species trajectories (panel c). Indeed, η is more than three times
higher than would be expected for a Poisson process (ηP = 1/

√
<N(t)>). Finally,

we computed the discrete Fourier transform to obtain the power spectrum of
the species trajectories for each of the simulation runs. Figure 3.57d shows
that the average of all the power spectra for species R trajectories has a peak
at a frequency of approximately 134 × 10−3 month−1, which is within 5% of
the theoretically predicted oscillation frequency f = Im (λ1,2) /2π = 141.46 ×
10−3 month−1 (corresponding to a period of approximately 7.069 months). We
will further investigate the reasons for the discrepancy between the observed
and deterministically predicted frequency value in future work.

We have also performed simulations for values of K that result in the fixed
point being a stable node, and verified that high-amplitude fluctuations do not
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Figure 3.56 – Volterra model: phase plane. a) We evaluated the velocity vector
(dNR/dt, dNF/dt) at each ordered pair (NR, NF ) according to the differential equations
(equations 3.65 and 3.62) to construct the direction field (green arrows). We also show the
two nullclines. The kinetic parameters are the same as listed in Figure 3.54 andK = 500. The
stable fixed point occurs at (100, 80) and the initial population sizes are shown on the plane as
a red star at (100, 100). The deterministic trajectory (black curve) spirals in a counterclock-
wise direction into the stable fixed point (the eigenvalues are λ1,2 = −0.10000 ± 0.88882i).

occur in those cases (not shown here). This is in keeping with our results from
studying oscillatory systems that these fluctuations only occur when damped
oscillations are predicted using the deterministic formalism. McKane and New-
man (2005) have made similar in silico observations when studying the Volterra
system.
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Figure 3.57 – Stochastic simulations of the Volterra model. We used the ABK algorithm
to simulate the Volterra model with parameters kb = 1 month−1, kd = 0.01 month−1,
k′

b = 0.01 month−1, k′
d = 1 month−1, K = 500. Total simulated time: 100 months;

fixed time step increment ∆t = 0.01 months. a,b) Sample and the average time trajectory
(n = 1000) of the populations for the initial condition NR,i = 100 and NF,i = 100.
All simulation results are superimposed on the deterministic solution (labeled “DE” in the
legends). We also show the one-standard-deviation envelope for < NR(t) > (gray dashed
curve in panel b). c) Comparison of the coefficient of variation, η(t), for species R and F with
that of a Poisson process. Both species trajectories show a significantly larger deviation from
their mean than expected. d) Average power spectrum of the NR trajectories obtained in
the ensemble (n = 1000) of ABK simulations. A periodic population trajectory corresponds
to a peak at a finite frequency in the spectrum. The vertical red line shows the theoretically
predicted oscillation frequency, obtained through the imaginary component of the eigenvalues,
f = Im (λ1,2) /2π = 141.46 × 10−3 month−1, corresponding to a period of approximately
T ≈ 7.07 months. Inset: power spectrum for the sample NR trajectory shown in panel a.
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3.6.2 The Kermack-McKendrick Model
We present the application of the ABK method to the model proposed by Ker-
mack and McKendrick (1927) on the evolution of an epidemic, a foundational
model in the field of epidemiology. We are especially interested in demonstrating
the effect that an absorbing state of the discrete dynamics has on observing de-
viations from the deterministic predictions when simulating the time evolution
of small population sizes.

We consider the spread of a disease through a population made up of three
types (species, or compartments) of agents: Susceptible (S) agents who can
become infected (I) upon contact with other infected agents. I individuals can
in turn recover from the infection (R). We denote the number of discrete agents
in the population as NS , NI , and NR, respectively. The system of differential
equations that Kermack and McKendrick proposed is

dNS
dt

= −kcNSNI (3.73)

dNI
dt

= kcNSNI − kdNI (3.74)

dNR
dt

= kdNI , (3.75)

where the constant kc is a measure of the average rate of contagion or infectivity,
and kd is a measure of the average recovery rate for infected (I) agents. The
reader can ascertain that the above system of differential equations implies that
NS +NI +NR = constant, which suggests that the time scale over which these
processes occur is small compared to the lifespan of the population’s members.
Therefore, we assume there are no deaths in the population and births or em-
igration/immigration are absent (i.e., no demographic processes). Also notice
that the differential equations for NS and NI have the same form as the ones
in the Lotka-Volterra model except that there is no term for the “birth” of S
agents. This model can accordingly be viewed as a competition between species
S and I.

The equations show that healthy or susceptible agents become infected at a
rate proportional to NSNI , the number of distinct pairwise interactions between
members of these two populations. Moreover, recoveries from infection occur at
a constant rate in proportion to the number of infected people present at any
given time. We thus transform the system of equations into an equivalent set
of distinct processes that we can explicitly model using the ABK method:

S + I
kc−→ I + I (3.76)

I
kd−→ R . (3.77)

kc is the microscopic 2nd order rate constant for the conversion of S to I, and
kd is the microscopic 1st order rate constant for the conversion of I to R.

We simulated this reaction scheme by implementing the ABK algorithm for
concurrent processes (I participates in both processes; see section 2.7). We

Follow this link to
see the Matlab code.
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evaluated the transition probability forms Pber or Pdif with respect to I with
KCFs ΩI = kcNS(tn) ∆t and ΩI = kd ∆t for the two respective processes. For
this particular example, we used kc = 0.03 days−1 and kd = 0.05 days−1 with
fixed time step increments of ∆t = 0.01 days. We observed that the initial num-
ber of I agents serves as a predictor of the agreement between the simulation
average time trajectories and the numerical solution to the system of differen-
tial equations (Figure 3.58). When the initial number of infected agents, NI,i,
is very small, say 1 or 2, then there was significant deviation from the deter-
ministic trajectories. This is not a failure of the ABK algorithm, but rather
a consequence of the fact that NI = 0 represents the extinction of I agents,
an absorbing state of the discrete dynamics (i.e., once it is reached, the system
state does not change). For instance, if we start monitoring the population
when there is only one I agent, then we would expect there is a sizable proba-
bility that it will recover before converting healthy individuals to infected ones.
The apparent discrepancy in the figure is then simply the result of averaging
over trajectories in which the populations of I and R do not grow and no epi-
demic occurs. For the parameters we used in this simulation (Figure 3.58b)
we observed that in approximately 10% of the simulations, NI decreases to zero
within the first few simulated days and no epidemic occurs (also see Figure 3.59,
ABK sample trajectory #1 drawn in S-I state space).29 This approach suggests
that an ensemble of agent-based simulated trajectories can be used to approxi-
mate the probability of a species extinction. Removing the trajectories in which
the disease did not spread from the ensemble of simulations produced average
trajectories that match the deterministic predictions (not shown).

We finally add that our simulations correctly predicted other expected prop-
erties of this model. For instance, it can be shown (Strogatz, 2015) that the
following condition has to be true to have an epidemic:30

0 < kd
kcNS,i

< 1 . (3.78)

Note that the term “epidemic” formally means that the number of infected
people increases before it goes down. Alternatively stated, NI(t) and dNR/dt
have a maximum at a time tpeak, the peak of the epidemic. An ensemble of
our simulations correctly predicted this tpeak value (e.g., see solid red curve in
Figure 3.58a).

This simple example highlights the importance of stochasticity in modeling
processes with small populations. Since every epidemic can be thought of as

29There are three variables in this model and therefore one should visualize the full state
space in three dimensions. However, we ignore the number of recovered individuals, NR,
for the purposes of this figure to keep these trajectories easily traceable and visualized on a
2-dimensional plane.

30This condition can be restated in terms of the epidemiological metric R0, the basic re-
productive number (the expected number of secondary infections from an infected individual
given a fully susceptible population of healthy individuals). In the model presented in this
section, we define R0 = kcNS,i

kd
. Thus, the condition 3.78 can be restated as 0 < 1/R0 < 1.

Equivalently, an epidemic occurs when R0 > 1.
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Figure 3.58 – Simulation of the Kermack-McKendrick model. We show here the results
from two sets of simulations of the Kermack-McKendrick model with kinetic constants kc =
0.03 days−1 and kd = 0.05 days−1. ABK simulation parameters: we used the Pber or Pdif

transition probability expressions evaluated with respect to I for both processes, with fixed
time step increments of ∆t = 0.01 days. The two plots are different in the initial number of
infected agents, NI,i, as indicated in the plot headers, but all other parameters are identical.
In both plots, the average trajectories (n = 500) of the populations are shown as solid curves
(the one-standard-deviation envelope for NR(t) is also shown on plot a). The deterministic
trajectories are shown as dotted curves in plot a and as dash-dot curves in plot b. The
apparent significant deviation of the average simulated trajectories from the deterministic
predictions in plot b is due to the lone I agent recovering before the epidemic can spread
(i.e., the system enters an absorbing state).
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Figure 3.59 – Kermack-McKendrick S-I state space. We present here a parametric repre-
sentation of the trajectories of species S and I. Here, we ignore species R to keep this plot
2-dimensional. The initial condition NS,i = 15, NI,i = 1 is designated by the label t = 0 on
the lower right-hand corner of the state space. We show the deterministic trajectory/path
through S-I space (labeled “DE” in the legend), evaluated by numerical integration of the
differential equations describing the model until time t = 50 days, as well as two sample
trajectories obtained through the ABK simulation (labeled as ABK #1 and ABK #2). The
density of points along the deterministic path is inversely proportional to the speed of the
trajectory through state space. The arrows indicate the flow of the agent-based simulation
through state space as time progresses. Notice that for sample ABK trajectory #1 (red open
circles), NI becomes and stays zero (an absorbing state of the system), so no epidemic oc-
curs. On the other hand, ABK trajectory #2 mirrors the deterministic path and the disease
spreads through the population.

starting with a single infected individual (“patient zero”), these results agree
with the logical premise that containing the spread of the disease at the earli-
est possible time is the best way to protect a susceptible population from an
epidemic. Thus, either through chance events (e.g., patient zero recovers before
infecting others) or through intervention according to public health policy/s-
trategy (e.g., infected individual is quarantined), the epidemic does not occur.
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3.6.3 The Brusselator
We now apply the ABK method to a much-studied mathematical model called
the Brusselator, originally devised to understand the origin of far-from-equilibrium
instabilities in chemical systems (Prigogine and Lefever, 1968) and the dynamics
of spatiotemporal chemical oscillations.31

The model we present here has only two species, X and Y , and is defined
by the following processes,

∅ kb−→ X (3.79)

X
kc−→ Y (3.80)

2X + Y
ka−→ 3X (3.81)

X
kd−→ ∅ , (3.82)

where kb is the 0th order rate constant for the production (or “birth”) of X, kc
is the 1st order rate constant for the conversion of X to Y , ka is the 3rd order
rate constant for the autocatalytic production of X from Y , and kd is the 1st

order rate constant for the degradation of X.32 The following figure summarizes
this reaction scheme in a succinct way.

Figure 3.60 – The Brusselator reaction scheme. A summary of the set of reactions defining
the Brusselator. The two dashed green arrows indicate that two molecules of X catalyze the
synthesis of X from Y .

The two green arrows indicate that two molecules of X catalyze the con-
version of a molecule of Y to X. This trimolecular (or termolecular) reaction
is what makes the Brusselator not likely to be physically realistic: very few
3rd order reactions are known to chemistry since they require the simultaneous

31Such oscillations were first observed by Belousov in the 1950s and later elaborated on by
Zhabotinsky and others. See Winfree, 1984, for a brief historical account of that early work.

32The original version of this reaction set included additional species whose population sizes
(or concentrations, in a chemical sense) were assumed to remain constant (as Prigogine and
Lefever also assumed). For instance, one of those species makes the conversion of X to Y
(with rate constant kc) a 2nd order process. We omit these additional species in our model
description for simplicity and without loss of generality (their concentrations can be thought
of as being absorbed into the kinetic rate constants).
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effective collision between three atoms/molecules.33 The nonlinearity of this
autocatalytic reaction in the differential equations describing the Brusselator is
necessary for its oscillatory dynamics (Tyson, 1973). That is, if reaction (3.81)
used only one molecule of X as a reactant and the reaction was bimolecular,
then a limit cycle is not theoretically possible.

Given this set of reactions, the Brusselator can be described by the following
set of differentials equations (DEs) in terms of the kinetic constants and the
populations sizes NX and NY :

dNX
dt

= kb + kaN
2
XNY − (kc + kd)NX (3.83)

dNY
dt

= kcNX − kaN
2
XNY . (3.84)

We will refer to this as the canonical set of DEs. For small populations sizes,
it is reasonable to consider the agent-based interpretation of the model, so that
the (slightly) modified set of agent-based DEs is

dNX
dt

= kb + kaNX (NX − 1)NY − (kc + kd)NX (3.85)

dNY
dt

= kcNX − kaNX (NX − 1)NY . (3.86)

Essentially, only the term describing the trimolecular step is different from the
canonical system of DEs, since when one X agent is recruited the pool of re-
maining and available X agents is NX −1. Given our previous investigations on
2nd and higher order processes (see Chapter 2), we expect the agent-based DEs
to be a better fit to the results of our simulations for small population sizes.

Table 3.1 summarizes a comparison of the main results regarding the fixed
point and Hopf bifurcation given the two DE interpretations we presented above.
Linear stability analysis of this 2-dimensional system shows that a (supercriti-
cal) Hopf bifurcation occurs when the relationship between the kinetic constant
parameters indicated in the 2nd row of Table 3.1 is satisfied. A limit cycle oc-
curs when kc is greater than the expression on the right side of the bifurcation
condition. This allowed us to set the parameters so that we could model this sys-

Follow this link to
see the Matlab code.

tem under predicted stable oscillatory activity. We show the Brusselator phase
plane in Figure 3.61 for one such set of parameters: ka = 1.0 × 10−4 sec−1,
kb = 0.30 sec−1, kc = 0.075 sec−1, and kd = 0.020 sec−1. The figure shows
the difference in the limit cycle predicted from the canonical and agent-based
DEs (gray vs. black trajectories), with the latter producing higher amplitude
oscillations.

We modeled the Brusselator for three sets of kinetic parameters, as shown
in Figure 3.62 (panel b corresponds to the same parameters as presented in

33Catalyzed bimolecular reactions are made out of three components, however in this case
a reaction does not occur with 3rd order kinetics because a stable intermediate (an enzyme-
substrate complex in enzymatic reactions, for example) occurs first before the rate-determining
step of catalytic conversion occurs.
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Canonical DEs Agent-based DEs
Fixed Point: N∗

X = kb/kd N∗
X = kb/kd

N∗
Y = kckd

kakb
N∗
Y = kckd

ka(kb−kd)

Hopf bifurcation
kc = kd + kak

2
b

k2
d

kc =
[
kd + kakb(kb−kd)

k2
d

](
1 − kd

kb

)
condition:

Oscillation freq.: f = 1
2π

√
kak2

b

kd
f = 1

2π

√
kakb(kb−kd)

kd

Table 3.1 – Canonical vs. agent-based DEs in the Brusselator. Results from the canonical
and agent-based DE interpretations of the Brusselator model. The first row shows the
state space coordinates

(
N∗

X , N
∗
Y

)
for the theoretically predicted fixed point. Evaluating

the Jacobian at the fixed point and setting the trace equal to zero yields the condition for a
(supercritical) Hopf bifurcation. The fixed point turns from stable to unstable as kc surpasses
the value given by the indicated expression. The bifurcation condition allows the calculation
of the oscillation frequency as the limit cycle is born.
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Figure 3.61 – Brusselator phase plane. Phase plane for the Brusselator (canonical DEs 3.83
and 3.84; agent-based DEs 3.85 and 3.86) with kinetic parameters ka = 1.0 × 10−4 sec−1,
kb = 0.30 sec−1, kc = 0.075 sec−1, kd = 0.020 sec−1, and initial population sizes NX,i = 0,
NY,i = 0 (a sample time trajectory for this parameter set is shown in Figure 3.62b). The
direction field is shown as green arrows (lighter shades of green correspond to velocity vectors
with greater amplitude). The nullclines, fixed point, and the predicted deterministic trajectory
(gray curve for the canonical limit cycle, black curve for the agent-based one) are also shown.
Abbreviations in legend: “Ab”, agent-based; “Can”, canonical; “DE”, differential equation;
“FP”, fixed point.
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the phase plane analysis in Figure 3.61). In all three cases we observed stable
oscillations (as expected, since we made sure the condition for a Hopf bifurcation
was satisfied), but with increasingly irregular amplitude and frequency when the
considered populations grew smaller (see this progression from panel c to b to
a). We found that the population amplitudes in our simulations more closely
matched the numerical solution to the agent-based DEs for smaller populations
(panels a and b) and the canonical DEs for larger populations (panel c). These
simulations show that the ABK algorithm can effectively predict the system’s
trajectory even when the involved species are synthesized and degraded at widely
separated time scales. For instance, NY builds up slowly before collapsing within
a very short time period in each cycle.

We have also calculated the average population trajectories for species X
and Y , and they follow a pattern of decaying oscillations (in the phase plane,
the average trajectory spirals inward to the fixed point). This has been observed
before in computational efforts to stochastically model the Brusselator reaction
scheme (Lumsden and Rowe, 1984). We do not show plots of these average
trajectories here because we have encountered the same phenomenon in other
oscillatory motifs presented in this chapter (e.g., see subsection 3.5.3 on the 3-
component negative feedback motif and subsection 3.6.1 on the Lotka-Volterra
model; see Figure 3.55 in particular).

We also show the result of a simulation with values of kinetic constants such
that the deterministic criterion for stable oscillations is not met (while still being
close to a Hopf bifurcation in parameter space). Instead, the deterministic pre-
diction (in either the canonical or agent-based formulations of the set of DEs)
is that populations oscillate with a decaying amplitude to their steady-state
values. We refer to this system as the deterministically-damped Brusselator.
However, we observe oscillations with no apparent decay in our ABK simula-
tions. Figure 3.63 shows a sample time trajectory for a total simulated time
of 6000 sec. We have run these simulations for up to 5 × 104 sec and there is
no indication of any decay in the oscillatory activity. We see therefore that the
oscillations in this form of the Brusselator are only damped in the deterministic
sense, while the stochastic simulations reveal sustained noisy oscillations. We
have already described several examples of this behavior in section 3.5.
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Figure 3.62 – Sample oscillatory time trajectories of the Brusselator. We simulated the
Brusselator for three distinct sets of microscopic kinetic parameters, (as indicated in the
headers of panels a-c; all kinetic constants have units of sec−1), for which stable relaxation
oscillations are predicted. We used the ABK algorithm with a fixed time step increment of
∆t = 0.01 sec in panel a, and ∆t = 0.02 sec in panels b, c. Note that the aspect ratio
between the t and N(t) axes is the same in all three panels, although the scale is different.
We also show the agent-based deterministic time trajectory for NX(t) in plot a, the agent-
based deterministic time trajectory for NY (t) in panel b, and the canonical DE solution for
NX(t) and NY (t) only during the first 1000 sec in c. Some or part of the DE curves were
omitted for ease of visualizing the stochastic trajectories. Abbreviations in legend: “Ab DE”,
agent-based differential equation; “Can DE”, canonical differential equation.
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Figure 3.63 – Sample time trajectory of the deterministically-damped Brusselator. We
simulated the Brusselator for a set of kinetic constants (all constants are listed in the header
and have units of sec−1) leading to damped oscillations using either the canonical or agent-
based DEs. We used the ABK algorithm for a total simulated time of 50000 sec (showing
here only up to 6000 sec) with a fixed time step increment of ∆t = 0.02 sec. The stochastic
simulation yielded persistent relaxation oscillations for the total duration of the simulated
time. Abbreviation in legend: “Ab DE”, agent-based differential equation.

Modified Brusselator

We conclude our brief presentation of the Brusselator by showing a nominally
modified version of it. We introduce a new intermediate species, Z, to avoid the
chemically unrealistic trimolecular step. The full set of processes defining this
modified Brusselator are,

∅ kb−→ X

X
kc−→ Y

X +X ⇌ Z (3.87)

Z + Y
k′

a−→ Z +X (3.88)

X
kd−→ ∅ ,

where the numbered processes have replaced the trimolecular step (process 3.81).
Notice that the synthesis and degradation processes of X are the same as before,
as is the 1st order conversion of X to Y . Two molecules of X combine (or
dimerize) to form Z in a reversible process (with rate constants kf and kr
for the forward and reverse reactions respectively). Z in turn catalyzes the
conversion of Y to X (with rate constant k′

a), however this process is 2nd order
now instead of 3rd. Thus, this is an example of indirect autocatalysis where X
catalyzes its own formation through the intermediate species Z. The following
figure summarizes this modified form of the Brusselator reaction scheme.
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Figure 3.64 – The modified Brusselator reaction scheme. A summary of the modified set
of reactions defining the Brusselator. The dashed green arrow indicates that a molecule of
species Z catalyzes the synthesis of X from Y . Since Z can be thought of as a dimer of X,
this scheme features an indirect autocatalytic loop.

This set of processes can be summarized in an updated system of canonical
DEs in terms of the discrete population sizes NX , NY , and NZ .

dNX
dt

= kb − 2kfN2
X + 2krNZ + k′

aNZNY − (kc + kd)NX (3.89)

dNY
dt

= kcNX − k′
aNZNY (3.90)

dNZ
dt

= kfN
2
X − krNZ (3.91)

The corresponding system of agent-based DEs is obtained by replacing N2
X with

NX (NX − 1) in the above equations.
It is clear that the steady-state value for the population of species Z is

N∗
Z = kf

kr
(N∗

X)2
. (3.92)

Substitution of this result into dNX

dt leads to a cancellation of the terms due to
the reversible reaction 3.87, leaving us with expressions for dNX

dt and dNY

dt that
are identical to the original Brusselator’s, except k′

a
kf

kr
takes the place of the

3rd order constant ka (we note this simplification to underscore the relationship
between this modified Brusselator and the original). However, we will make
no assumptions about the reversible process being fast compared to the other
processes in the scheme when performing simulations. In fact, as we will see in
the example below, the population of Z is not in a steady state for our choice
of parameters (see blue time trajectory in Figure 3.65).

For notational simplicity, we letK = kf

kr
, whereK is the equilibrium constant

for the reversible reaction. The coordinates of the canonical fixed point can
therefore be easily shown to be

N∗
X = kb

kd
, N∗

Y = kckd
(k′
aK) kb

, N∗
Z = K

(
kb
kd

)2
. (3.93)
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The corresponding quantities for the agent-based DEs are

N∗
X = kb

kd
, N∗

Y = kckd
(k′
aK) (kb − kd)

, N∗
Z = K

kb (kb − kd)
k2
d

. (3.94)

Follow this link to
see the Matlab code.

We simulated the modified Brusselator with parameters k′
a = 0.01 sec−1,

kb = 0.30 sec−1, kc = 0.075 sec−1, kd = 0.02 sec−1, kf = 0.01 sec−1 and kr =
1 sec−1, such that K = 0.01 and the product k′

aK = 0.0001 sec−1. This set
of parameters is the same as the one presented for the original form of the
Brusselator in Figure 3.62b (with ka = k′

aK). Our simulation results again
showed excellent agreement with the agent-based differential equations used
to describe this modified form of the Brusselator. We end this subsection by
showing in Figure 3.65 a sample time series obtained from the ABK simulation
of this reaction scheme. Our general observations and comments on the original
Brusselator apply here as well.
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Figure 3.65 – Sample oscillatory time trajectory of the modified Brusselator. We simulated
the modified Brusselator for the indicated set of kinetic constants (all constants have units
of sec−1) for which stable relaxation oscillations are predicted. We used k′

a = 0.01 sec−1,
kb = 0.30 sec−1, kc = 0.075 sec−1, kd = 0.02 sec−1, kf = 0.01 sec−1 and kr = 1 sec−1,
such that K = 0.01 and the product k′

aK = 0.0001 sec−1. We implemented the ABK
algorithm with a fixed time step increment of ∆t = 0.01 sec and for a total simulated
time of 2500 sec. We also show the agent-based deterministic time trajectory for NY (t).
Abbreviation in legend: “Ab DE”, agent-based differential equation.
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Chapter 4

Agent-Based Kinetics for
Heterogeneous Populations
of Well-Mixed Systems

In the previous two chapters we established that the ABK algorithm can be
used to describe systems made out of agents with identical kinetic properties
(i.e., homogeneous populations). Some of the motifs we have presented can
give rise to population heterogeneity in higher-level structures (e.g., stochastic
switching or out-of-phase intracellular oscillators consisting of molecular com-
ponents result in cellular phenotypic variation). In this chapter, we lay the
foundations for the ABK algorithm to be used for studying the effect of het-
erogeneity on population dynamics. Specifically, we describe how the algorithm
can be adapted to modeling heterogeneous populations whose agents can un-
dergo 1st or 2nd order transitions and birth-death processes. We then generalize
for higher order processes and develop a graph-theoretic view of intra- and in-
terspecies agent interactions. We also revisit several of the motifs presented in
Chapter 3 to examine case studies highlighting how the nominal presence of
population heterogeneity can affect the emergent properties of the system, such
as noise-induced switch state reversals and oscillatory behavior. Finally, we
discuss how sensitivity analysis can be performed to assess the effect of various
metrics of heterogeneity on a population’s average time trajectory.
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4.1 Introduction: Types of Heterogeneity
We define heterogeneity with respect to the intrinsic kinetic rate constant that
an agent of a species population has. That is, we associate each agent with
a kinetic parameter (with units of reciprocal time) that reflects its intrinsic
propensity with respect to a transition that a member of the species can undergo.
This agent-specific constant is the same as the microscopic constant, k, and can
be obtained from measurements on the kinetics of homogeneous populations.

We define a group of agents belonging to a given species that have an intrinsic
rate constant that is different from the one of other members in the population
as a subspecies (with a corresponding subpopulation size). An example of a
commonly encountered case in biochemistry is a eukaryotic protein’s isoforms,
which typically have different rate constants with respect to their activity (e.g.,
catalysis, binding to other molecules, etc.). In the limiting case where all agents
have different rate constants, then the number of subspecies is the same as the
population size.

The above definition of subspecies is most appropriate for species undergoing
a 1st order process. For 2nd and higher order processes, we find it more useful to
consider the interactions between agents. In those cases, we refer to kinetically
distinct types of intra- or interspecies interactions as subinteractions. We will
further elaborate on this choice of nomenclature in the following sections.

There are two general types of heterogeneity we will primarily concern our-
selves with:

1. Compositional heterogeneity: A species consists of several subspecies and
agents in different subpopulations have different intrinsic rate constant
values. Thus, the probability of transition for a given agent depends on
which subpopulation it belongs.

2. Temporal heterogeneity: The rate constants for the agents of a given pop-
ulation or subpopulation are time-dependent.

We will first present how to measure the degree of compositional heterogeneity
in a population, and then discuss how we can adapt the ABK algorithm to
simulate the time evolution of species undergoing basic processes where one or
both of the above types of heterogeneity are present.

4.2 Measures of Population Heterogeneity
We begin by defining a basic measure of population heterogeneity: the popu-
lation richness, C, signifying the number of distinct types of agents within a
population. We note that this measure can be generally applied to different
hierarchical levels of a population: 1) it can describe the number of species in a
system (e.g., a community, in an ecological context), or 2) the number of kinet-
ically distinct subspecies in a species population. We are more interested in the
latter interpretation, but for the sake of generality we will distinguish between
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these two contexts by including a subscript of the species name when describing
its number of subspecies. As an example, the notation C = 3 denotes a system
or community with 3 species, while CA = 3 means that species A consists of 3
subspecies. It is evident that the richness does not take into account the abun-
dance of the different species/subspecies and is therefore a rather crude measure
of a population’s heterogeneity.

We present a more useful quantitative measure of the degree of compositional
heterogeneity, the index of heterogeneity, defined as

ψ = 1 − 1
N(N − 1)

C∑
h=1

nh(nh − 1) , (4.1)

where N is the total number of entities (e.g., agents) within the population,
and nh is the number of entities within the hth type or group.1 The summation
term runs over all types, quantified by C or CA depending on the context.
The above relation can be interpreted as the probability that two randomly
chosen (without replacement)2 entities belong to different types. As such, ψ
has the desirable property 0 ≤ ψ ≤ 1. Note that ψ is a simple transformation
of a measure of diversity in a population first proposed by Simpson (1949),
such that it increases with increasing heterogeneity.3 Therefore, the interval’s
endpoints correspond to the boundary cases of a homogeneous (ψ = 0) and fully
heterogeneous population (ψ = 1).

The index of heterogeneity is a measure of the relative number of distinct
types of subpopulations, but does not capture information about the numerical
variability of the kinetic rate constants. To have a full appreciation of popu-
lation heterogeneity, one needs to supplement ψ with measures of the species-
or interaction-specific rate constants’ statistical distribution properties, such as
their means and variances. We establish the definition of these properties below
and highlight our notational convention for them.

1We use the terms “entities”, and “groups” or “types” for the sake of generality. We will
use more specific terms when discussing 1st and 2nd order processes in the following sections.

2If we had chosen to represent this probability in terms of sampling the first entity and
then having it replaced in its subpopulation before selecting a second entity, the index of
heterogeneity would then be

ψ = 1 −
1
N2

R∑
h=1

n2
h . (4.2)

The difference between the two forms of ψ is small for large population sizes. However,
for low copy number populations, the issue of choosing with or without replacement can
give significantly different results. We therefore prefer the formulation given in equation 4.1
because it is in keeping with the agent-based interpretation we have used throughout this
work and is applicable to small population sizes.
Note that this version of ψ (equation 4.2) is sometimes used in other fields. For instance, a
machine learning method used for classification or regression is constructing a decision tree
(or a random forest, which considers an ensemble of decision trees), where ψ is referred to as
the Gini impurity index (the notation often found for this index in this context is G) and is
used as a cost function to assess how the training examples assigned to a particular node are
mixed among classes. Optimally, ψ = 0 and all examples fall under one class.

3The index of heterogeneity is also sometimes referred to as the Gini-Simpson index in the
ecology literature, and Gibbs-Martin index in sociology and psychology.
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We define the fractional abundance of the hth subspecies or subinteraction
as

χh = Nh
N

, (4.3)

where h is an integer in the interval [1, C] with C being the total number of
subspecies or types of subinteractions that pertain to a given process, Nh rep-
resents the population size of the hth type of subspecies/subinteractions, and N
is the total number agents of a given species or possible subinteractions.

We now illustrate how this notation can be specifically used in the context
of 1st and 2nd order processes. Given that a species A with CA subspecies
undergoes a 1st order process, the fractional hth subspecies abundance is

χAh = NAh
NA

, (4.4)

where NAh is the number of the hth subspecies agents and NA is the total
number of A agents. Similarly, for a 2nd order process with two interacting
species, A and B, the fractional hth subinteraction abundance is

χABh = NABh
NAB

, (4.5)

where NABh represents the number of the hth type of subinteractions, and NAB
is the total number of possible A–B interspecies interactions. We establish
the convention of the sequence of species names in the subscript to denote the
species with respect to which the ABK algorithm is run for such a heterologous
2nd order process. The notation NBA vs. NAB then conveys information about
how the process was simulated, in addition to the total number of possible
B–A (or A–B) interspecies agent interactions (we will revisit this convention in
section 4.5). Also note that this general notation can be easily adjusted and
extended for homologous 2nd order (e.g., χAA) and higher order processes.

These fractional abundances allow for the calculation of the mean of the
process-specific rate constant, k,

k =
C∑
h=1

χhkh . (4.6)

For simplicity in the presentation of the above equation, we have written the
subscripts in simplified form by omitting the species names participating in the
process. The variance can then be easily calculated,

V ar{k} = k2 − k
2
. (4.7)

Finally, we note that information-theoretic measures of heterogeneity (e.g.,
Shannon’s diversity index) can also be found in the literature of different fields
of study. However, we will not use them here because we find that ψ and the
above statistical properties of k adequately quantify the different aspects of
population heterogeneity that are relevant to this work.
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4.3 0th Order Processes
Since 0th order processes result in the creation (or “birth”) of agents of a given
species, the probability of such an event is population-based and evaluated the
same way as described in Chapter 2. In this case, we need only concern our-
selves with assigning intrinsic rate constant values to the newly created agents,
thereby generating heterogeneity within a population. The rate constant values
can be assigned according to a known distribution obtained from experimental
evidence, or conjecturally based on a user-specified rule or statistical distribu-
tion that the modeler wants to test. For instance, one can assign k values to
agents that come into existence by randomly sampling a normal distribution
with a specified mean k and standard deviation σk. In this case, if rn is a
random number drawn from the standard normal distribution (i.e., a normal
distribution with mean 0 and standard deviation of 1) then the k value for the
ith agent can be calculated by

ki = k + σk rn . (4.8)

Note that a new random number needs to be drawn every time a new agent
is created. As a result, the population of a given species will consist of agents
whose intrinsic rate constants are normally distributed around a specified mean
value.

This approach to creating heterogeneous populations through a 0th order
birth process assumes knowledge of all other processes that agents of a given
species can participate in. Accordingly, a separate k value would need to be
generated for each of the relevant processes. For instance, if a species A can
transition through either a 1st or 2nd order process (i.e., concurrent processes;
see section 2.7) then a newly synthesized A agent needs to have two rate constant
values computed as described above.
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4.4 1st Order Processes
To simulate 1st order processes where, in the general case, compositional and
temporal heterogeneity are present, we construct at the beginning of the sim-
ulation a population heterogeneity matrix (henceforth abbreviated as PHM) of
size s × p, where s represents the number of time steps the algorithm will run
through and p is the total number of agents belonging to a particular species.
Therefore, each species has its own PHM. Note that if the agent-specific rate
constants are time-independent, then the PHM reduces to a row vector with
dimensions 1 × p.

Figure 4.1 – Population heterogeneity matrix for a 1st order process. We define the
population heterogeneity matrix (PHM) to be the s× p matrix of the kinetic rate constants
for a population exhibiting both compositional and temporal heterogeneity. The number of
time steps considered in an ABK simulation is s, and p is the total number of agents of a
given species.

The number of rows in the PHM, s, can be set at the beginning of the
simulation if fixed time step increments are used for a preset total simulated
time. Alternatively, the number of rows of the PHM can change if the time
step durations are variable and/or if the simulation runs until some condition
is met (such as a population size reaching a maximum value or a species going
extinct). However, we note that changing the size of the PHM during the course
of a simulation can have a negative effect on the algorithm’s performance as the
number of species increases (recall that each species has its own PHM) because
Matlab searches for a contiguous block of computer memory to store the matrix
in. Repeated resizing of the matrix leads to additional computational overhead
for managing memory allocation. We recommend that a predetermined number
of time steps (e.g., for fixed values of ∆t) is used so that memory is preallocated
for each species PHM. This ensures the most efficient use of a computer system’s
memory resources during the simulation.

The same concern exists for the number of columns in the PHM: agents of a
given species are being synthesized or degraded during the course of a simula-
tion, so the choice of how to represent the size of the population is important.
One option is for p to represent the number of agents that are “alive” or exist
at any given time point in the simulation. The obvious disadvantage of this
approach is the frequent changing of the PHM size leading to inefficient use of
computer memory. In the general case where many processes may be involved,
it is our recommendation to set p to a user-defined maximum value (which can
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be updated only if a population grows too much), so that the number of columns
in the PHM represents the intrinsic rate constants for existing agents as well as
those that may have already transitioned at a previous time step or will be syn-
thesized at a future time. A modeler can specify the values of the rate constants
in a number of ways, one of which we presented in our discussion of 0th order
processes. For instance, all possible rate constant values can be set prior to the
beginning of the simulation based on a discrete or discretely-sampled continuous
distribution (such as the normal distribution). Alternatively, the rate constants
can be dynamically assigned as agents come in and out of existence based on a
specified distribution. Rules can also be devised that change the distribution of
rate constant values across a species population in a time-dependent manner.

In summary, the PHM captures both the compositional and temporal het-
erogeneity of a species population, and can be flexibly adapted to a modeler’s
preferences or needs.

4.4.1 Predicting the Time Trajectory of a Heterogeneous
Population

We now show how to calculate the statistical properties for a 1st order process oc-
curring in a heterogeneous population. We aim to determine the time-dependent
probability distribution of the species population size while taking into account
an arbitrary level of heterogeneity within it. This will allow us to compute the
distribution’s moments, thus obtaining information about the uncertainty in the
expected trajectory. We note that the CME is only appropriate for describing
the time evolution of homogeneous populations. We propose here an alternate
method which only uses basic concepts in combinatorics and probability theory.

It is easiest to understand our approach by first assuming a homogeneous
population. Consider the process A → X, with species A having a nonzero
initial population size NA,i, while NX,i = 0. At any given time t, let the
probability that an agent of species A has already transitioned to X at some
time in the interval (0, t) be PA→X(t). Its complement, PA↛X(t) = 1−PA→X(t),
represents the probability that an agent remains a member of species A at time
t. Since an agent can exist in one of two mutually exclusive and collectively
exhaustive states (a binary agent), whether or not an agent of species A has
transitioned can be considered a Bernoulli trial. It is then reasonable to examine
the answer to this question: what is the population-wide probability that the
population of A consists of n agents at time t? Clearly,

P̂ (n, t) =
(
NA,i
n

)
[PA→X(t)]NA,i−n [PA↛X(t)] n. (4.9)

We have previously shown (see section 2.2) that the per-agent probabilities have
the form

PA→X = 1 − e−kt (4.10)
PA↛X = e−kt, (4.11)
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and P̂ can be rewritten as

P̂ (n, t) =
(
NA,i
n

)(
1 − e−kt)NA,i−n (e−kt) n. (4.12)

We remind the reader that this treatment is practically the same as presented
in subsection 2.2.5 and the above equation is the same result as equation 2.41,
except we previously considered the number of transition events, µ, which can be
easily related to n by n = NA,i − µ. We also refer the reader to that subsection
for showing that n (or µ) is indeed binomially distributed.

Population homogeneity is manifested in all agents being characterized by
the same numerical value of the rate constant k. Therefore, the per-agent prob-
abilities PA→X and PA↛X always have the same value for a specified t. There
will be a number of distinct ways, or combinations, that the population can exist
with n agents, each with the same probability value,

(
1 − e−kt)NA,i−n (e−kt) n.

Since the system can be in the same state in a number of ways, the total prob-
ability P̂ (n, t) will accordingly be the sum of the probabilities for each of the
possible combinations. This allows the grouping of a number of additive terms
exactly given by the binomial coefficient (which enumerates the possible combi-
nations of n agents of species A). This grouping is not possible, however, when a
population is heterogeneous, and a full listing of the agent-specific probabilities
is necessary.

We take the symmetry-breaking effect of heterogeneity into account by using
a subscript to denote the agent-specific rate constant k (following the convention
used in Figure 4.1). P̂ (n, t) has the form,

P̂ (n, t) =
(NA,i

n )∑
s=1

 NA,i−n∏
h(s) ̸=j(s)

(
1 − e−kht

) n∏
j(s) ̸=h(s)

(
e−kjt

) , (4.13)

where the indices h and j are uniquely determined by each particular combina-
tion of agents that the sum runs through (sampled by the index s). The reader
will observe the correspondence of the above equation to 4.12: the products in
the bracketed part of the expression are the probabilities of agents who have and
have not transitioned in the time interval (0, t) respectively. The sum takes into
account all possible combinations of n existing agents within the population at
time t.

We can calculate P̂ (n, t) for all integral values n ∈ [0, NA,i] and for each
value of t we are interested in, thereby obtaining the time-dependent probability
distribution of the population size. We can then determine the first and second
raw moments,

<NA(t)> =
NA,i∑
n=0

nP̂ (n, t) (4.14)

< [NA(t)]2> =
NA,i∑
n=0

n2P̂ (n, t) , (4.15)
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and subsequently determine the variance,

σ2 ≡ V ar (<NA(t)>) =< [NA(t)]2> − <NA(t)>2 . (4.16)

We note that predicting the time trajectory of a heterogeneous population
in this way is prohibitively computationally intensive for initial population sizes
of NA,i > 100. This is due to the large task of generating a list of all possible
combinations of agents in the population, calculating the respective probabili-
ties, and performing algebraic operations on them. However, the procedure we
have outlined is exact and can, in principle, be used to predict the statistical
properties of the trajectory of a heterogeneous population of any size.

4.4.2 ABK Implementation
Specifically with respect to a 1st order process, the propensity for an agent of
a given species to transition is independent of other agents, therefore the algo-
rithm works the same way as is described in Chapter 2 (subsection 2.2.6). The
only difference is that the transition probability for the ith agent is calculated
using ki, obtained from the ith column of the species PHM (and the row which
corresponds to the current time step in the simulation if ki varies with respect
to time).

Follow this link to
see all of the relevant
code.

We show a simple example of using the algorithm for the process A → X,
where species A consists of two subspecies, denoted by A1 and A2 (see Matlab
code on page 283). Since we will consider a 1st order process by itself, we set the
maximum number of agents to the initial population size of A. This way, the
number of columns in the PHM, p, is set and needs no adjustment at any time
during the simulation as long as the agent’s binary state (0: ‘dead’, 1: ‘alive’)
is stored in memory.

We first simulate the case where agents of each subspecies transition to
X with time-invariant microscopic rate constants kA1 = 0.3 sec−1 and kA2 =
0.7 sec−1, respectively. We consider the situation where the initial population
sizes4 are NA,i = 10 and NX,i = 0, and with initial subpopulation sizes NA1,i =
NA2,i = 5 agents (richness CA = 2; index of heterogeneity ψA = 5/9 ≈ 0.5556,
evaluated using equation 4.1 in section 4.2). Figure 4.2a shows the time tra-
jectory for the population of species A, averaged over 2000 repetitions of the
simulation (solid blue curve), and compares it to the deterministic trajectory
of a homogeneous population with microscopic rate constant k = k = 0.5 sec−1

(dotted green curve). The discrepancy between the two curves is due to the
different kinetics of the two subpopulations: A2 transitions to X faster than
A1, so that after a sufficient period of time has elapsed the population of A con-
sists of mostly A1 agents. We show that this is indeed the case in Figure 4.2b,
where we plot a histogram of transition events for each subspecies within 1 sec
intervals. We have superimposed the probability density function (PDF) of the

4In keeping with the notation we have used throughout this work, when the subscript i
follows a comma it denotes the initial population size. This is not to be confused with the ith

agent whose rate constant ki can be found in the ith column of the PHM.
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exponential distribution, f(t, k) = k e−kt, for each of the two subspecies (with
rate constants kA1 and kA2) on the histogram. The excellent fits (R2

A1 = 0.9986,
R2
A2 = 0.9997) are in agreement with the expectation that a 1st order process

follows Poissonian statistics, therefore the event interoccurrence times are expo-
nentially distributed (also see subsection 2.2.5 and Figure 2.5 for a presentation
of these arguments as they apply to homogeneous populations). Note that the
plot shown in 4.2b is independent of the initial population size, NA,i (or the
initial subpopulation sizes, NA1,i and NA2,i, for that matter), as would be ex-
pected for a 1st order process where agent transitions occur independently of
one another.

The above observations further imply that if we were to monitor <k(t)>, the
population-wide average of the rate constant at a given time t, it would approach
the value of the slowest subpopulation (the one with agent-specific rate constant
kA1, in this case). We have confirmed that this is indeed the case (not shown).
We will refer to this phenomenon of the kinetically slower subspecies making up
the entire species population at later time stages as enrichment.5 We will see
more examples of this behavior in this chapter as we explore more case studies
of the effect of heterogeneity on population trajectories.

We also show in Figure 4.3 the relative standard deviation and coefficient
of variation, η (a measure of the amount of noise inherent to the process), for
the trajectories of heterogeneous populations with k = 0.5 sec−1, but for several
different pairs of values for kA1 and kA2 (alternatively stated, for different values
of Range{kA1, kA2} or V ar{k}, the latter as evaluated using equation 4.7). We
then compare the results of our simulations with the predicted standard devi-
ation obtained through the method we presented in the preceding subsection
(see equation 4.13 and ensuing discussion). It is evident in Figure 4.3a that
in all cases the fits to the predicted relative standard deviation are excellent
(R2 > 0.9980). It is important to note how the values of the subpopulation rate
constants affect the standard deviation and coefficient of variation. The larger
the Range{kA1, kA2} is, the smaller η(t) is, indicating that the level of noise
decreases as the subspecies are increasingly kinetically distinguishable. This ob-
servation supports the hypothesis that heterogeneity can have significant effects
on the observed time trajectories of populations as well as in the uncertainty in
them. It further suggests that, conversely, the level of population heterogeneity

5We can state this in the general case for the slowest subspecies, A1, as

lim
t→∞

NA1(t)
NA(t)

= 1 , (4.17)

which reflects the fact that it dominates the population’s composition and, therefore, its ki-
netics at larger times scales. That is, NA1(t) asymptotically approaches NA(t), the former
considered as the time trajectory of a distinct subpopulation. We have confirmed this asymp-
totic relationship in our simulated time trajectories.
We can also write a similar expression for the species with the fastest kinetics:

lim
t→∞

NA2(t)
NA(t)

= 0 . (4.18)

That is, NA2(t) is negligible compared to NA(t) at t → ∞.
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can potentially be inferred from experiments or field measurements that allow
determination of the statistical properties of a population’s time trajectory.

We can therefore see that a 1st order process involving a heterogeneous
population is essentially a collection of 1st order processes, one for each of the
subspecies. We have also investigated the kinetics of fully heterogeneous pop-
ulations (where all agents have different k values) of different sizes and have
obtained similar results to the ones we presented above (not shown). Impor-
tantly, we have demonstrated through the simple case of only two subspecies how
heterogeneity affects the statistical properties of simulated time trajectories and
that the ABK algorithm gives results that agree with theoretical expectations.
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Figure 4.2 – Time trajectory and transition event distribution of a 1st order process with
two subspecies. We consider the process A → X, where the initial population of species A,
NA,i = 10 agents, consists of two subspecies with equal initial subpopulations sizes. The
microscopic rate constants for the subspecies in this simulation are kA1 = 0.3 sec−1 and
kA2 = 0.7 sec−1 (average rate constant k̄ = 0.5 sec−1). a) The average time trajectory
for the population of species A is shown, obtained from an ensemble of 2000 repetitions of
the ABK simulation (solid blue curve, with its one-standard-deviation envelope delineated
by the gray dashed curves). We also show the deterministic trajectory for a homogeneous
population where all agents have the same rate constant k = k = 0.5 sec−1 (dotted green
curve). The predicted time trajectory for the specified heterogeneous population (dotted red
curve, and labeled as “Prediction” in the legend; see equation 4.13 and surrounding text) is
in near perfect agreement with the average obtained through our simulations (R2 = 0.9999).
b) Histogram of the fractional amount of agent transitions, grouped by subspecies, within
successive simulated-time intervals of 1 sec duration (aggregated over all 2000 repetitions
of the simulation). Subspecies A2 (orange bars) follows faster kinetics so that in the later
time stages the population of A consists almost entirely of subspecies A1 agents (light blue
bars). This explains the discrepancy between the simulation and deterministic prediction in
panel a. We have superimposed the probability density function (PDF) of the exponential
distribution, f(t, k) = k e−kt, for the subspecies with rate constants kA1 and kA2 (dark
gray and purple solid curves respectively). The agreement of the PDFs with the respective
histograms is excellent (R2

A1 = 0.9986, R2
A2 = 0.9997).

199



0 1 2 3 4 5 6 7 8 9 10

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

a)

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

b)

Figure 4.3 – Standard deviation and coefficient of variation of a 1st order process with
two subspecies. We consider the process A → X, where the initial population of species
A, NA,i = 10 agents, consists of two subspecies with equal initial subpopulations sizes,
and average rate constant k̄ = 0.5 sec−1. a) Comparison of the relative standard deviation
for the entire population’s average time trajectory and its predicted value (calculated using
equation 4.13 to obtain the second central moment). We show the results for the simulation
of several examples of heterogeneous populations with the same structure (i.e., NA,i = 10,
and equal initial subpopulations sizes) and k = 0.5 sec−1, but with increasingly different
values of kA1 and kA2. The standard deviation of a homogeneous population’s trajectory
with k = k = 0.5 sec−1 is also shown (cyan curve). In all cases, the agreement with the
predicted curves (obtained using equation 4.13 to calculate the moments) was excellent
(R2 ≥ 0.9980). b) Plot of the coefficient of variation, η, obtained from the ABK simulation
of the same cases as in panel a.
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4.5 2nd Order Processes
To simulate 2nd order processes, we need to modify the dimensions of a PHM
so that both types of heterogeneity (compositional and temporal) can be dealt
with in the general case. We begin by considering the heterologous process
A+B → X, with p and q being the initial number of A andB agents respectively.
We can then construct a p × q × s matrix of the kinetic rate constants, as
illustrated in 4.4 below.

Figure 4.4 – Population heterogeneity matrix for a 2nd order process. We define the
population heterogeneity matrix (PHM) to be the p × q × s matrix of the kinetic rate
constants for a population exhibiting both compositional and temporal heterogeneity. p and
q are the initial number of agents of species A and B respectively, and the number of time
steps considered in an ABK simulation is s.

Recall that one can use the ABK algorithm to simulate the process A+B →
X with respect to either species A or B. That is, one can evaluate the transition
probability for each of the agents belonging to the population of one of the two
species (see section 2.3 for a treatment of homogeneous populations). Here, we
use the convention of assigning the row dimension of the PHM to the species
with respect to which the transition probabilities are computed. Therefore, the
PHM has dimensions p×q×s if the 2nd order process is considered with respect
to A, and q × p× s if with respect to B.

We note that all kinetic constant values in the PHM apply to unique pairs
of agents, and each pair deals with a distinct interspecies agent interaction. For
instance, running the algorithm with respect to A and assuming that agents
labeled as 1 and 2 of either species have not been consumed yet, then k1,2 does
not have the same meaning as k2,1: the former applies to the interaction between
agent 1 of species A and agent 2 of species B; k2,1, on the other hand, applies
to the interaction between agent 2 of A and agent 1 of B.

Therefore, we can calculate the probability of all possible interactions within
a given time step by considering all entries in the PHM. Given a PHM having the
same form as the one shown in Figure 4.4, then for the ith A agent interacting
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with the jth B agent, we have

Pber,Ai+Bj→X(tn) = 1 − eki,j(tn) ∆t (4.19)
Pdif,Ai+Bj→X(tn) = ki,j(tn) ∆t , (4.20)

where boldface A in the subscripts indicates that the simulation is run with
respect to species A. The algorithm can then proceed as it does when simulating
homogeneous populations (that is, sequentially working on each agent of A,
or row of the PHM, sampled by the counter variable i), but considering each
possible interaction with the jth agent of B by drawing a random number from
the uniform distribution and comparing it to the value obtained from one of
the above probability expressions. The algorithm takes into account each of
these probability values only when both agents forming an interacting pair have
not been consumed in a previous time step. Notice that this method allows for
simulating the time trajectory of a fully heterogeneous population by evaluating
all possible interactions for a transition event.

Moreover, it can be easily shown that this method reduces to the one we
have previously seen for homogeneous populations. To see this, we consider the
total probability that the ith agent of A will transition in the nth time step of
the simulation,

Ptot, Ai (tn) =
q∑
j=1

bj ki,j(tn) ∆t , (4.21)

where we used the Pdif form of transition probabilities and bj is a boolean
factor with values 0 or 1 reflecting if agent j of species B has been consumed
in a previous time step or not, respectively. Alternatively, we can think of bj as
the binary state value of agent j.

Essentially, we want the summation to extend only over agents ofB which are
available at time tn by not having been consumed at a previous time step. We
can then evaluate the sum by first recognizing that for a compositionally homo-
geneous population all entries in the PHM are identical; that is, ki,j(tn) = k(tn),
and we can take the k(tn) term outside of the sum along with ∆t. Moreover,
summation over all terms gives

∑q
j=1 bj = NB(tn), since only agents of B present

at time tn are counted. Thus, we obtain,

Ptot, Ai
(tn) = k(tn)NB(tn) ∆t . (4.22)

The expression on the right side of equation 4.22 is the same as 2.86 (derived for
the treatment of homogeneous populations). The above equality also extends to
the case of using the Pber form of transition probabilities in the limit of ∆t → 0
(also see discussion in section 2.7 on this argument).

We present an example of this approach by considering initial population
sizes NA,i = 10 and NB,i = 7, NX,i = 0, where, in the simplest case, there
are only two numerically distinct and time-invariant rate constant values.6 We

6We present this simple example to illustrate how the ABK algorithm works. We remind
the reader that, in general, all ki,j entries can be numerically distinct.
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denote these values by kBA1 and kBA2, and we interpret them as defining two
kinetically distinct types of subinteractions between agents of A and B. Nota-
tionally, we assign meaning to the order of the species names in the subscript:
the first species is indicative of the ABK algorithm running with respect to it
(as explained in section 2.3; this notation was introduced in section 4.2 in the
context of subinteraction abundances). In this case, our notation shows that we
will simulate the time evolution of this process with respect to species B. We
therefore construct the PHM with dimensions 7 × 10 (q×p) so that exactly half
of the possible pairwise interactions are characterized by kBA1 and the rest by
kBA2. As a simple example, we provide below a choice of PHM that fulfills this
criterion with values of kBA1 = 0.004 sec−1 and kBA2 = 0.006 sec−1 (we show a
simulated time trajectory using these subinteraction kinetic parameters later in
this section) 

4 4 4 4 4 6 6 6 6 6
4 4 4 4 4 6 6 6 6 6
4 4 4 4 4 6 6 6 6 6
4 4 4 4 4 6 6 6 6 6
4 4 4 4 4 6 6 6 6 6
4 4 4 4 4 6 6 6 6 6
4 4 4 4 4 6 6 6 6 6


× 10−3 sec−1 (4.23)

Notice that for a specific agent of species B (represented by a row in the PHM)
the 2nd order rate constant has one value when interacting with agents A1−5
and a different value with A6−10. This means that heterogeneity in dependent
on the identity of an agent belonging to species A. Therefore, we can say that
A consists of two subspecies, A1 and A2, while the population of species B is
homogeneous.7 Although this assessment of the origin or nature of heterogeneity
is in general useful to consider, we find that examining the populations at the
level of subinteractions is appropriate for the general case of no symmetry in
the PHM, and is consistent with the way the ABK algorithm works (i.e., by
evaluating the probability of an interaction between two agents).

The computation of ψ in this case requires consideration of the number of
subinteractions (not agents; see section 4.2). In this sense, ψ measures the
degree of heterogeneity in subinteractions. The richness, CBA, is the number
of kinetically distinct subinteractions between species B and A. The index of
heterogeneity, ψBA, can then be calculated by considering the number of each
type of subinteraction (nBAh in equation 4.1) and the total number of possible
subinteractions (NBA = pq). For the case we described above, evaluation of
these quantities yields ψBA ≈ 0.507. The subinteraction abundances can also
be easily determined, χBA1 = χBA2 = 1/2.

Using combinatorics to obtain a theoretical prediction of the average trajec-
tories (and their standard deviations) of heterogeneous populations undergoing
a 2nd order process is a tedious and extremely computationally intensive pro-

7Examining this with respect to A yields the same conclusion: an agent of A has the same
rate constant regardless of the B agent it interacts with (see any column in the above PHM).

203



cess even for small population sizes. The calculation goes along the same lines
as outlined for 1st order processes (subsection 4.4.1), however one needs to be
especially careful to correctly account for all possible agent combinations that
result in a successful transition event or failure. Given how computationally ex-
pensive and cumbersome this calculation is, we abandon its use as a theoretical
predictor of statistical measures of heterogeneous population trajectories. We
continue by presenting the results of our ABK simulations with confidence that
they represent the true effects of heterogeneity on the trajectories of well-mixed
populations. Our confidence stems from the following observations: a) the al-
gorithm, as presented above, correctly reproduces the species trajectories in the
limiting case of homogeneous populations (which we have thoroughly checked
against theoretical predictions; see section 2.3); b) some of the trends that are
present in 1st order processes as the degree of heterogeneity increases (espe-
cially the ones regarding the uncertainty in the population trajectories) are also
present here.

4.5.1 ABK Implementation of a Heterologous 2nd Order
Process

The algorithm parses the PHM left-to-right and row-by-row to exhaustively
evaluate whether a transition event will occur for each possible B–A interaction
within a given time step. Because we (arbitrarily) ordered the rate constant
values in the PHM in a symmetrical way for the purposes of this example, care
must be taken to avoid any possible biases. Here, for a given agent of B (or
row of the PHM shown in expression 4.23), reading the matrix from left to
right will consider all of the slower subinteractions before the faster ones (since
kBA1 < kBA2). We assume here a well-mixed system so that there should be
no predetermined order in the pairwise interactions the algorithm considers.
We avoid this unnecessary bias by randomizing the order in which the column
entries of the PHM are sampled when the algorithm parses a row.

Follow this link to
see all of the relevant
code.

We simulated the time evolution of this process for several sets of subinter-
action rate constant values (kBA1 and kBA2) with the PHM having the same
symmetry as in expression 4.23. All cases that we examined have the same
initial average rate constant value, k = 0.005 sec−1, and measures of hetero-
geneity χBA1 = χBA2 = 0.5, and ψBA ≈ 0.507. We used the ABK methodol-
ogy8 for heterogeneous populations discussed in the preceding paragraphs with
fixed time step increments of duration ∆t = 0.01 sec, for a total simulated time
of 200 sec, and obtained the average time trajectories of the populations after
1000 repetitions of the simulation (Figure 4.5a,b). The greater the difference
between kBA1 and kBA2, the more the average trajectory differs from the de-
terministic one with rate constant k. This is evident in Figure 4.5b where
the average simulated trajectory shows slower kinetics after the first 20 sec.
It is reasonable to propose that the faster subinteraction dominates the ki-
netics initially, but in doing so it depletes the populations of both species so

8The Matlab code used for this simulation is included in Appendix D ( on page 285).
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that the slower subinteraction becomes underrepresented in the list of possi-
ble interactions. This is not surprising since a 2nd order process depends on
interspecies agent interactions (unlike 1st order processes). We show that this
is indeed the case in Figure 4.5c,d, where we plot a histogram of the fraction
of species B agents undergoing a transition within successive time intervals
of 10 sec duration. We have superimposed the predicted distribution of tran-
sition events for homogeneous populations with rate constant kBA1 or kBA2,
respectively (numerically calculated from the solution to the ODE or CME for
this process; see Figure 2.12 and accompanying discussion for calculating these
values). The plots show that the faster subinteraction consistently transitions
faster than in the corresponding homogeneous population, while the trend is
reversed for the slower subinteraction. This can be seen more clearly in the in-
sets of 4.5c,d, where we have plotted the deviation of the fraction of transition
events in the heterogeneous case from its homogeneous population counterpart
(deviation = simulated heterogeneous−theoretical homogeneous). kBA1 always
shows negative deviations, while kBA2 shows positive deviations. The initial
magnitude of the deviations (i.e., within the first 100 sec) becomes larger as
the difference between the subinteraction rate constants increase. In the later
time stage (t ⪆ 100 sec) when the populations are already mostly depleted, the
deviations approach zero.

We remind the reader that for 1st order processes we observed that the
temporal distribution of the subspecies transition events followed Poissonian
statistics, as expected for a process where agents transition independently of
each other. We have shown through our example that in the case of a 2nd order
process the distribution of subinteraction transition events does not follow the
statistics obtained for the same process occurring in a homogeneous population.
We have not yet resolved on theoretical grounds what the precise distribution
is.

We have verified that using this algorithm for a homogeneous population
(where all PHM entries have the same value) yields the same time trajectory
and transition event distribution as the one we presented in subsection 2.3.2. We
have also performed experiments on heterogeneous populations for a variety of
initial population sizes, values of the subinteraction rate constants, and methods
of computing transition probabilities (Pber or Pdif ), and obtained similar results
to the ones we presented above.

We show the standard deviation and coefficient of variation for some of these
cases in Figure 4.6. Although we do not have a theoretical prediction to compare
these curves to, the overall trend is the same as what we observed for 1st order
processes (see Figure 4.3): the larger the Range{kBA1, kBA2} is, the smaller η(t)
becomes, indicating that the level of noise decreases as the subinteractions are
increasingly kinetically distinguishable. Our simulations therefore suggest that
heterogeneity appears to have significant effects on the statistical properties of
an ensemble of population time trajectories.

We are unaware of any measurements on real populations whose hetero-
geneity with respect to its agent-specific kinetic parameters is precisely known.
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Figure 4.5 – ABK simulation of a 2nd order process with two subinteraction groups.
We consider the process A + B → X, with initial population sizes of NA,i = 10 and
NB,i = 7 agents, and two subinteraction groups, each with an abundance of χBA = 0.5
(thereby each occupying half of the PHM entries, as exemplified in expression 4.23). The
microscopic rate constants for the subinteractions are indicated in each panel. We ran
the ABK simulation with respect to species B using fixed time step increments of dura-
tion ∆t = 0.01 sec for a total simulated time of 200 sec. a) kBA1 = 0.004 sec−1 and
kBA2 = 0.006 sec−1. The average time trajectory for the population of species A and B
are shown, obtained from 1000 repetitions of an ABK simulation (one-standard-deviation
envelopes are delineated by the gray dashed curves). We also show the deterministic (nu-
merical solution to ODEs) prediction based on the average rate constant k = 0.005 sec−1

(dotted curves). b) Same as in a, except kBA1 = 0.002 sec−1 and kBA2 = 0.008 sec−1.
c,d) Histogram of the fraction of agent transitions, grouped by subinteraction, within suc-
cessive simulated-time intervals of 10 sec duration (aggregated over all 1000 repetitions of
the simulation). The theoretically predicted fraction of transitions within a pure (homoge-
neous) population consisting of only one type of subinteraction (numerically calculated from
the solution to the ODE for this process; use of the CME yields approximately the same
results; see Figure 2.12) is superimposed on the histogram (light blue squares for subinter-
action BA1 and open black circles for BA2). The inset plot shows the difference between
the observed (i.e., simulated) fraction of subinteraction transitions and the numerically-
computed theoretical fraction for each subinteraction homogeneous population counterpart
(deviation = simulated heterogeneous−theoretical homogeneous). Subinteraction BA2 (or-
ange bars) follows faster kinetics, thereby quickly depleting the pool of available agents that
can be part of a transition. This results in the slower subinteraction, BA1 (light blue bars),
exhibiting even slower kinetics than its homogeneous population counterpart.
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Figure 4.6 – Standard deviation and coefficient of variation of a 2nd order process with two
subinteractions. We consider the process A+B → X with the same simulation parameters
as in Figure 4.5. We show the results for the ABK simulation of several examples with
increasingly different values of kBA1 and kBA2. a) Comparison of the relative standard
deviation for species B’s average time trajectory, <NB(t)>. The standard deviation of a
homogeneous population’s ABK trajectory with k = k = 0.005 sec−1 and the corresponding
CME prediction are also shown (solid cyan and red dashed curves, respectively). b) Plot of
the coefficient of variation, η, obtained from the ABK simulation of the same cases as in
panel a.
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Therefore, we cannot at the moment compare our algorithm’s predictions with
real datasets.

4.5.2 Adjustments to the Algorithm for the 2nd Order Ho-
mologous Process

Our treatment of the 2nd order homologous process A+A → X is the same as
for the heterologous one, except for the following:

• the time-invariant PHM is a square matrix of size p × p, since both the
rows and columns represent the number of agents belonging to the same
species, A. If temporal heterogeneity also needs to be considered, the
PHM has dimensions p× p× s, where s is the number of time steps.

• the number of distinct pairwise interactions is p2 − p = p(p− 1), because
an agent cannot interact with itself in a second order process. As such, the
diagonal entries ki,i, with the index i taking the integer values from 1 to p,
are not included as the algorithm parses through the possible interactions
within a given time step.

Other than the omission of the PHM’s diagonal entries the algorithm proceeds
in the same way as described for the heterologous case by advancing row by row
until all possible pairwise interactions are considered. Note that the algorithm
considers both instances of a pairwise interaction as possible transitions. For in-
stance, the interaction between agents A1 with A2 is considered separately from
that between A2 and A1. This is consistent with the version of the algorithm we
used for simulating this process in a homogeneous population (subsection 2.3.1).

It is reasonable for the case of the homologous process A+A → X to assume
that the order in which a particular agent-agent interaction is considered does
not affect the value of its transition probability. This is manifested in the PHM
with the condition that the rate constant values ki,j = kj,i (provided that i ̸= j)
resulting in a diagonally symmetric PHM matrix in which there are at most
p(p−1)

2 unique values of k.

Follow this link to
see the Matlab code.

We have confirmed that when using a PHM reflecting a homogeneous popu-
lation, the algorithm produces indistinguishable time trajectories from the ones
obtained in subsection 2.3.1. Moreover, heterogeneous populations consisting
of two or more subinteraction groups produces results similar to the ones pre-
sented above for the heterologous case. We do not show these results here in
the interest of brevity.
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4.6 Generalization to Graphs
We have up to now implicitly assumed that the agents of different species pop-
ulations can interact in 2nd and higher order processes without restrictions. For
instance, in the process A + B → X, any A agent has the potential to react
with any B agent. This makes sense in a well-mixed system, but restrictions
may arise due to spatial constraints or other reasons specific to the system at
hand. We therefore create a more abstract representation of agent interactions:
intra- or interspecies interactions can be represented by a graph whose nodes
are the agents and edges are the possible interactions between them. This way
of representing populations allows one to potentially take into account spatial
heterogeneity, where agents may be distributed across separate “compartments”
or sequestered in such a way so that only specific agent interactions are possi-
ble. We consider a more general version of this to be topological heterogeneity,
in recognition of the fact that reasons other than spatial separation may result
in different instantiations of node connectivity.

We show an example of such a graph in Figure 4.7, along with its PHM, a
sparse matrix with only a handful of nonzero entries. The figure depicts a time-
independent PHM, however the dependence on time of the node connectivity can
be be easily implemented: the PHM can be extended to have a third dimension
that allows for time-dependent variability in the graph topology and the values
of the rate constants (similarly to Figure 4.4).

Follow this link to
see the Matlab code.

The ABK algorithm can be easily adapted to accommodate cases such as
these. We have tested the time-independent model described in Figure 4.7 and
performed analyses similar to the ones presented in section 4.5. We do not
show these results here because they mirror our observations shown in Fig-
ure 4.5 (except the overall kinetics are slower given the dearth of possible agent
interactions). We will further explore the capabilities of generalizing the ABK
algorithm to graphs in future studies.
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PHM =



k1,1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 k2,9 0
0 0 0 0 0 0 0 0 0 0
0 k4,2 0 0 0 0 0 0 0 0
k5,1 0 0 0 k5,5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 k7,5 0 0 k7,8 0 0


(4.24)

Figure 4.7 – Graph representation of the 2nd order process A + B → X. An example
graph representation of a heterologous 2nd order process with NA,i = 10 and NB,i = 7,
in which only seven B–A interacting pairs are possible. Each agent is a node (color-coded
by species: A, yellow; B, green). Only nodes connected by (undirected) edges represent
possible interacting interspecies pairs. The top panel shows an arrangement of the nodes that
parallels the rectangular structure of the PHM (shown in the middle panel; equation 4.24).
The bottom panel shows an alternative, and arguably clearer, view of the graph that could
be indicative of the constraints (e.g., spatial structure) that give rise to the observed node
connectivity.
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4.7 Higher Order Processes
The ABK algorithm can be easily extended to model higher order processes by
adjusting the size of the PHM: an nth order process would require the PHM to
have n+1 dimensions (where the additional dimension is needed for cases involv-
ing time-dependent rate constants). The algorithm would proceed by evaluating
the transition probability for each n-tuple agent interaction, whose rate constant
is represented at a unique position in the PHM. All other considerations with
respect to how the algorithm works remain the same.

For instance, all entries in the PHM represent distinct interspecies agent
interactions in fully heterologous cases with n species. On the other hand, in
homologous cases where there is only one species (e.g., 3A → X for a 3rd order
process), all dimensions of the PHM are of equal size but entries that represent
interactions of an agent with itself must be skipped. For a 3rd order process with
p agents belonging to a species, the size of the time-invariant PHM is p×p×p, but
p2 elements along the diagonals correspond to agent self-interactions. Thus, the
total number of possible interactions that the algorithm calculates a probability
for at each time step is p3−p2 = p2(p−1). In general, for a nth order homologous
process, the number of distinct possible interactions is pn−pn−1 = pn−1(p− 1).

In cases where the species interactions are neither fully heterologous nor
homologous, the number of PHM entries to be skipped must be carefully con-
sidered since it depends on the precise interspecies connectivity as defined by
the system’s processes. For instance, in the process 2A+B → X where species
A and B consist of p and q agents respectively, the time-invariant PHM has size
p× p× q, and the number of possible interactions is p2q − pq = pq(p− 1).
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4.8 Heterogeneity in a Birth-Death Process
We now return to a simple reaction scheme we previously examined in sec-
tion 2.8. We consider the 0th order production (birth) and 1st order degradation
(death) of agents belonging to species A,

∅ kb−→ A
kd−→ ∅ . (4.25)

Our previous implementation of simulating the time evolution of this scheme
focused on a homogeneous population of A; that is, the birth process produced
identical A agents with respect to the kd constant characterizing their degrada-
tion. Here, we explore the effect of heterogeneity on the time evolution of this
system.

We take the birth process, whose rate constant is kb, to yield a population
of A agents with a normal distribution in kd. We assign the kd value of the ith

newly created agent by drawing a random number rn from the standard normal
distribution, and then using equation 4.8, we have

kd,i = kd + σkd
rn , (4.26)

where kd is the mean and σkd
the standard deviation of the degradation rate

constant distribution. The ABK algorithm stores each agent’s kd value in the
one-dimensional PHM for the 1st order degradation of A (a matrix of size 1 ×p,
as shown in Figure 4.1 and discussed in section 4.4).

Follow this link to
see the Matlab code.

We simulate this birth-death process with parameters kb = 0.10 sec−1, kd =
0.010 sec−1, σkd

= 0.0025 sec−1. Notice that kb and kd have the same numerical
values that we used in the case of a homogeneous population of A (section 2.8).
We can therefore assess the effect of heterogeneity by directly comparing our
simulations to those shown in Figure 2.15 and the corresponding deterministic
results.

We show the average and one-standard-deviation envelope of NA(t) obtained
using the ABK algorithm in Figure 4.8a. The average time trajectory differs
from the deterministic expectation (equation 2.143), which is evaluated using
the average degradation rate constant kd,

NA(t) = kb

kd

(
1 − e−kdt

)
. (4.27)

The reason for the observed discrepancy is that the distribution of kd is time-
dependent even though the 0th order birth process produces agents accord-
ing to a preset normal distribution. This is clearly shown in the inset plot
of Figure 4.8a: The average value of the rate constant given the population
structure at time t and obtained though an ensemble of ABK trajectories,
< kd(t) >, decreases and approaches a steady state value of approximately
< kd >

∗≈ 0.0093 sec−1 when t > 500 sec, which is also when the average pop-
ulation size approaches its steady state value of <NA>∗≈ 10.5 (deterministic
N∗
A = kb/kd = 10). Meanwhile, the standard deviation of the kd distribution re-

mains the same (σkd
= 0.0025 sec−1; green dashed lines in the inset plot define

the one-standard-deviation envelope).
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As we have seen when examining the time evolution of populations undergo-
ing 1st and 2nd order processes, agents with higher kinetic rate constants transi-
tion with higher probabilities, thus leaving the population with a higher abun-
dance of more slowly transitioning agents. We observe the same phenomenon
here with the faster degradation of some agents resulting in an enrichment of
“slower” A agents, and therefore a lower observed average value of kd than the
birth process produces.

If the birth-death process is considered as a simple example of population
dynamics from the general perspective of evolution,9 then the agents are individ-
ual organisms and their capacity for survival is determined by a trait quantified
through the agent-specific value of kd. Therefore, the observed effect is an
example of directional selection, with the trait’s distribution shifting with the
passage of time while retaining its shape (in this case, a normal distribution
with a specified standard deviation). The population shifts toward being made
up of agents who are more likely to have lower kd values and therefore survive
longer.

We continue our analysis by showing the time-dependence of the standard
deviation, obtained from the ensemble of ABK simulations, in Figure 4.8b. We
then compare it to two sets of predictions for the same quantity: the CME-
derived standard deviation (equation A.62) that uses the value of the constant
kd,

SDev(<NA(t)>; kd)CME =

√
kb

kd

(
1 − e−kdt

)
, (4.28)

and the same expression that uses the observed time-dependent<kd(t)> instead
(i.e., obtained from the ensemble of ABK simulations, as shown in the inset of
Figure 4.8a):

SDev(<NA(t)>; < kd(t)>)CME =

√
kb

<kd(t)>
(
1 − e−<kd(t)>t

)
. (4.29)

We note that the above expressions of the standard deviation were derived from
the CME while assuming that kd is time-invariant. The justification for using
< kd(t)> in equation 4.29 is that we can imagine solving the CME for small
enough non-overlapping time intervals such that kd is approximated as constant
in each of them. We used ∆t = 0.01 sec in our simulations, an interval duration
that is sufficiently small so that equation 4.29 is a good fit to the standard de-
viation obtained from our simulation data (R2 = 0.9867). Also notice that this
CME-derived prediction of the standard deviation depends on having a poste-
riori knowledge of < kd(t)>, since it can only be obtained by performing the
ABK simulation before equation 4.29 can be evaluated. We are not aware of
another method for theoretically predicting the statistical properties of hetero-

9A 0th order birth process is an unrealistic model of population growth through asexual or
sexual reproduction, but it is reasonable to consider this simple example as an approximation
to the case where the population size increases at a constant rate.
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Figure 4.8 – The effect of heterogeneity on a birth-death process. We simulated the reac-
tion scheme ∅

kb−−→ A
kd−−→ ∅ using the ABK algorithm for a total simulated time of 500 sec

with fixed time step increments of ∆t = 0.01 sec. Kinetic parameters: kb = 0.10 sec−1,
kd = 0.010 sec−1, σkd

= 0.0025 sec−1. We show here the results of an ensemble of 5000
repetitions of the simulation. a) Comparison of the time trajectory NA(t) obtained through
an ensemble of ABK simulations (solid blue curve) and the deterministic expectation for a
homogeneous population with rate constant kd = kd = 0.010 sec−1 (dotted blue curve).
The one-standard-deviation envelope for our simulation results is also shown (dashed gray
curves). Inset plot: time trajectory of the time-dependent population-wide average degra-
dation rate constant <kd(t)> (solid green curve) and its one-standard-deviation envelope
(bounded by the dashed light green curves). The dotted red line corresponds to the mean,
kd, of the normal distribution of newly created A agents through the 0th order birth process.
b) Plot of the standard deviation obtained through the ensemble of ABK simulations (solid
blue curve) and the predicted standard deviation using the CME with either kd (dash-dotted
faint red curve) or the observed < kd(t) > (dashed red curve). The agreement between
our simulation and the latter curve is excellent (R2 = 0.9867). Inset plot: comparison of
the coefficient of variation, η, from our simulations and that expected for a Poisson process
(R2 = 0.9999).

214



geneous population trajectories.10 We propose that performing a computational
experiment through the use of ABK to obtain an ensemble of trajectories is an
effective method for estimating these statistical properties.

We proved in Appendix A.2 that a birth-death process is Poissonian and
with standard deviation given by SDev(<NA(t)>) =

√
<NA(t)>. Evaluating

this expression using the average ABK trajectory, <NA(t)>ABK , gave values
virtually indistinguishable from SDev(<NA(t)>; <kd(t)>)CME (not shown).
Finally, the inset plot in Figure 4.8b shows the coefficient of variation for our
simulation results, η, and that predicted for a Poisson process, ηP = 1/

√
<NA(t)>.

The agreement is excellent (R2 = 0.9999). We therefore conclude that the
birth-death process of a heterogeneous population is consistent with Poissonian
statistics.

Given our observations in simulations of 1st order systems (section 4.4) and
those presented above, we predict that the presence of heterogeneity in the
1st order degradation rate constant of any species will produce a shift in the
population-wide distribution of the rate constant value resulting in an enrich-
ment of more slowly transitioning agents.

10The combinatorial method we introduced in section 4.4 is of dubious value in this case
because agents are continuously synthesized and degraded. Any enumeration of agent com-
binations within the population could only be performed synchronously with the stochastic
simulation, as this would be the only way full knowledge of the population’s makeup at a
particular time point can be obtained. Moreover, the method would only make predictions
for the duration of the current time step ∆t, which would make this approach prohibitively
computationally more expensive than the ABK algorithm.
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4.9 Heterogeneity in the Sigmoidal Switch Mo-
tif

We now examine the effect of compositional heterogeneity on continuous switches
(see section 3.2). Specifically, we revisit the abbreviated 2-step sigmoidal re-
sponse motif, shown below (this is the same as Figure 3.5):

As a reminder, kf and kr are the microscopic rate constants for the forward
and reverse reactions respectively, and we make the following assumptions: a)
two agents of S are needed to promote the forward transition A → R; b) the
population size of S agents, NS , is held constant; c) NTOT = NA(t) +NR(t) is
constant.

We consider several cases of compositional heterogeneity in the population
of either species A or R (or both) with respect to the process they participate in.
Since there are no additional birth or death processes beyond the interconversion
between A and R, we use a PHM array for either species that holds the specified
values for the kinetic rate constants. That is, the ith value in the PHM is used
to calculate the transition probability of the ith agent according to the species
it belongs to. To further speed up the simulation, we use a 1:1 mapping to
keep track of A–R interconversions: the ith A agent is converted to the ith R
agent and vice-versa, so that an agent of the respective species takes on the
value of the rate constant assigned to it in its ith PHM entry (we simulated
this motif with homogeneous populations using the same mapping). This way
of modeling the motif is consistent with the interpretation that an agent of a
subspecies is merely modified according to the forward and reverse processes, as
would be the case when a protein molecule is phosphorylated/de-phosphorylated
and heterogeneity can result from a change in the protein’s isoform-dependent
kinetic properties upon the modification. As we did when simulating this motif
with homogeneous populations, we note that the forward reaction is essentially
modeled as a 1st order process with NS only affecting the numerical value of the
transition probability (i.e., we do not explicitly model A–S agent interactions;
the KCF with respect to each A agent is ΩA = kfN

2
S ; see subsection 3.2.1 for

a discussion on this). Therefore, a 1-dimensional PHM array is appropriate for
simulating the forward reaction. We remind the reader that our treatment here
is general and not meant to be limited to biochemical systems. As such, the
presence of heterogeneity that we will examine is represented through idealized
scenarios that can be used to assess the effect of diversity on population time
trajectories and the system’s emergent properties.

We present below a summary of the cases we investigated with the simplest
possible heterogeneous population structure: the indicated species consists of
two subspecies, each with an equal number of entries with a distinct value in
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the PHM. For instance, heterogeneity in species A involves two subspecies (A1,
A2), each with NT OT/2 placeholders in the PHM for the respective kf values. In
our simulations, we used NTOT = 100, therefore each subspecies has 50 entries
in the PHM for kf (and similarly for species R and kr values).

We list the cases here according according to the shorthand notation we will
use to refer to them in the ensuing figures.

HET1 kf : Species A consists of two subspecies with kf values of 0.50 × 10−4

and 1.50 × 10−4 sec−1.

HET1 kr: Species R consists of two subspecies with kr values of 0.05 and
0.15 sec−1.

HET2 kf : Species A consists of two subspecies with kf values of 0.25 × 10−4

and 1.75 × 10−4 sec−1.

HET2 kr: Species R consists of two subspecies with kr values of 0.025 and
0.175 sec−1.

HET1 kf and kr: Species A consists of two subspecies with kf values of 0.50 ×
10−4 and 1.50×10−4 sec−1, and species R of two subspecies with kr
values of 0.05 and 0.15 sec−1.

HET2 kf and kr: Species A consists of two subspecies with kf values of 0.25 ×
10−4 and 1.75×10−4 sec−1, and species R of two subspecies with kr
values of 0.025 and 0.175 sec−1.

Notice that all of the above six cases result in the full population’s average
values of <kf >= 1.00×10−4 sec−1, <kr>= 0.10 sec−1, as was the case when we
simulated homogeneous populations in subsection 3.2.1. In all of the simulations
we will present, the initial population sizes are NA,i = 25 and NR,i = 75. The
agents were initially randomly assigned to their PHM placeholders so that the
initial average rate constant values are approximately those given above.

Follow this link to
see the Matlab
code.

We first show the SR curves for the above cases in Figure 4.9a. It is clear that
the presence of heterogeneity results in the SR curve being different from the
one computed through the simulation of homogeneous populations. The figure
reveals the following trends: a) Heterogeneity in the kr values of species R shifts
the SR curve to the left of the homogeneous one. Accordingly, the NS,50 value
(producing a half-maximal response in N∗

R) is lower than in the homogeneous
case. Also, the maximum slope of the sigmoidal curve and maximum value of
N∗
R remain the same.11 We have also performed simulations with normally-

distributed rate constant values where the number of subspecies is the species
11The reader will also notice that N∗

R is nonzero for low NS values (e.g., for NS = 0)
in the HET2 kr case (curve consisting of green triangles in Figure 4.9a). This is because
the slower subspecies (with the smaller agent-specific kr value of 0.025 sec−1) dominates the
population of R, thus slowing the progression of population trajectories to the steady state
within the simulated 100 sec time period. Consequently, the N∗

R obtained from our simulations
is nonzero. This misrepresents the system’s long-term behavior because, indeed, NR → 0 as
t → ∞, albeit with slower kinetics than in the homogeneous case.
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population size and all R agents have a unique kr value. Figure 4.9b (cyan and
magenta curves) shows that such heterogeneity in kr again results in a shift of
the SR curve to the left of the homogeneous case. b) Heterogeneity in the kf
values of species A shifts the SR curve to the right of the homogeneous case,
resulting in the computed NS,50 value being larger (Figure 4.9a). Moreover,
the maximum slope of the sigmoidal curve and maximum value of N∗

R decrease.
c) The HET1/2 kf and kr cases (Figure 4.9a) show that heterogeneity in both
species balances the above two effects producing an SR curve that is virtually
indistinguishable from the homogeneous case (R2 = 0.9998). Although one may
be tempted to think that this balancing effect from the dual presence of het-
erogeneity may be general, we show through a counterexample in Figure 4.9b
(green dotted curve) that it is not. The observed SR curve is obviously de-
pendent on the species population structures and degree of heterogeneity (as
quantified by the various metrics of population diversity; see section 4.2).

We also plot the time-dependent population-based average rate constant
values12 for three of the above cases in Figure 4.10. In all cases, the same effect
as previously illustrated when studying heterogeneity in a birth-death process
(Figure 4.8a) is present: the subpopulation with the higher rate constant gets
depleted by a surge of transition events in the early time stages of the simulation,
while the slower subpopulation dominates the species population at later time
stages. The extent of this enrichment in agents with slower rate constants is
modulated by the value of NS and which species has a heterogeneous population.
When species R consists of two subspecies (Figure 4.10b), < kr > settles to a
higher steady state (although still lower than the initial < kr > value) as NS
increases. This is because the forward process becomes quadratically faster as
NS increases, thus having a greater tendency to replenish the pool of fast R
agents at any given time point. On the other hand, when heterogeneity in
species A is present (Figure 4.10a) <kf > settles to a lower steady state as NS
increases. This can be explained by the fact that the forward process depends
on N2

S and the faster A agents are more likely to transition to R as Ns increases,
thereby leaving the slower A agents to dominate the population of A. Finally,
case HET1 kf and kr (Figure 4.10c,d) is interesting because the presence of
heterogeneity in both A and R balance each other out in this case, and <kf >
reaches the same steady steady state for all values of NS . The initial bump in
<kf > for low NS values is due to a surge of fast R agents being converted to
A. Recall the initial population sizes, NA,i = 25 and NR,i = 75, therefore, the
high initial population of fast R agents leads to a surge of transitions to A while
the probability of a forward process transition is small for low NS values.

The above results suggest that caution should be exercised when interpreting
experimental results obtained from population-based or batch measurements.
For instance, a researcher trying to measure the NS,50 value or cooperativ-
ity (e.g., Hill coefficient) of a sigmoidal response can get significantly different
estimates depending on the degree of heterogeneity in the population of the in-

12The average rate constant given the structure of the corresponding species population
at time t. This can show which subspecies population becomes enriched as simulated time
elapses.

218



0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

90

100

a)

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

90

100

b)

Figure 4.9 – Heterogeneity in the abbreviated 2-step sigmoidal response motif: SR curves.
For both plots, the simulation parameters are: kinetic constants < kf >= 0.0001 sec−1,
< kr >= 0.10 sec−1, initial populations NA,i = 25 and NR,i = 75, and total simulated
time of 100 sec with fixed time step increments of ∆t = 0.01 sec. We performed separate
simulations for integer values of S agents, NS = 0−80. We estimated N∗

R by averaging NR

over the course of the last 50 sec of simulated time to account for the variation in population
size due to stochasticity once the steady state had been reached. We then repeated the
simulation (n = 100) for each value of NS to obtain the average and standard deviation
of N∗

R. We plot here the average steady-state population size of R, <N∗
R > vs. NS for

each of the simulated cases. We show the resulting SR curves in two separate panels for
clarity. a) We used the ABK algorithm to model this motif for the two-subspecies cases
described in the text (we do not show case HET2 kf and kr, which produced virtually
identical results to case HET1 kf and kr, to avoid overcrowding the plot). The blue curve is
the reference SR curve obtained by simulating homogeneous populations (Figure 3.6). The
one-standard-deviation envelope is also shown for the HET2 kf and HET2 kr SR curves
(gray dashed curves). b) We performed additional simulations using the same methods as
above. The notation we use for the normal distribution is N (µ , σ). We show here two
examples of heterogeneity in which all R agents have a unique kr value, with kr sampled
from the normal distribution N (0.10 , 0.025) and N (0.10 , 0.050). We also plot the SR curve
where both species A and R feature heterogeneous populations: A consists of two subspecies
with kf values of 0.25 × 10−4 and 1.75 × 10−4 sec−1 (same as case HET2 kf ) and species
R with kr ∼ N (0.10 , 0.025).
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Figure 4.10 – Heterogeneity in the abbreviated 2-step sigmoidal response motif: time-
dependence of population-based average rate constants. We plot the time-dependence of
the average rate constant values, <kf (t)> and <kr(t)>, with units of sec−1, determined
from the transient population structure of species A and R respectively (i.e., depending on
which agents belonging to each subspecies are ‘alive’ at time t). We show the following
cases: a) HET2 kf , b) HET2 kr, c,d) HET1 kf and kr. Each plot shows a time series
of the indicated average rate constant for selected values of NS in the simulated range
NS = 0 − 80 (only NS values that are multiples of 5 are shown for ease of visualization). A
black vertical arrow on the side of each panel indicates the general progression of the series
as NS increases. Notice that the scale of the vertical axes differs depending on which rate
constant is being plotted.
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volved species. Therefore, it is clear that knowledge of the presence of underly-
ing population heterogeneity is essential for assessing the accuracy of estimated
parameters and interpreting population-based metrics of a system’s dynamical
behavior.
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4.10 Heterogeneity in the Hysteretic Switch from
Mutual Activation

We now revisit the hysteretic switch motif presented in subsection 3.3.3 and
consider the effect of heterogeneity in just one of the involved processes. For
convenience, we show below the motif’s interspecies connectivity (this is identi-
cal to Figure 3.23), where the mutual activation loop formed by species R and
Ep can lead to bistability for a range of parameter values.

We remind the reader that we assume no further synthesis and degradation
reactions for E and Ep, therefore NE(t) + NEp(t) = constant = NE,TOT . In
the following discussion, we will use the same set of parameters as we did when
simulating this motif with homogeneous populations, except for the parameter
KM,r. Specifically, instead of using a fixed value for the Michaelis constant of the

Follow this link to
see the Matlab code.

reverse reaction for all agents belonging to species E, we examine here the case
of two E subspecies, E1 and E2, with equal subpopulation sizes. For instance,
setting an initial population size NE,i = NE,TOT = 100, then 50 E1 agents have
KM,r = 1 and 50 E2 agents have KM,r = 19, such that <KM,r(t = 0)>= 10
and SDev{KM,r(t = 0)} ≈ 9.05. Notice that this average value of KM,r is the
same as the fixed one we used when simulating a homogeneous E population. We
encode this heterogeneity using a 1-dimensional PHM vector,13 the ith entry of
which serves as a placeholder for K(i)

M,r of the ith E agent when it is in existence.
That is, upon a conversion of an Ep agent to the ith E agent, the latter takes
on the value of K(i)

M,r in the PHM. Accordingly, the time-dependent population-
wide average <KM,r(t)> fluctuates around the average value of 10 and the size
of the fluctuations varies inversely with the population size NE(t).14 We show

13The reader will note that the conversion of E to Ep is a 2nd order process based on our
definition of this motif, since R promotes this reaction without being consumed. Consequently,
a 2-dimensional PHM would be needed in the general case where heterogeneity exists in the
E–R agent interactions. However, we assume for the sake of simplicity in the present case
that the population of R is homogeneous with respect to the E–R interactions, and the PHM
“collapses” to a 1-dimensional vector describing only the variation of parameter KM,r in
species E.

14The assigned K
(i)
M,r in the PHM is time-independent, however the population-wide <

KM,r(t)> varies depending on the structure of the E population (i.e., which E agents are
‘alive’ or ‘dead’ at a particular time point). This is a convenient way of implementing the
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that this is indeed the case in Figure 4.11, where we compare the species time
trajectories when the system is in the OFF or ON switch states. In the latter
case, the population NE(t) is small and the fluctuations of <KM,r(t)> become
more pronounced.

We now investigate if the presence of heterogeneity has a statistically signif-
icant effect on the SR curve of this system. We simulated this motif with the
same parameters as listed in Figure 4.11, taking into account the heterogeneity
in the parameter KM,r to obtain the SR curve for two sets of initial population
sizes: NR,i = 0, NEp,i = 0, NE,i = 100 and NR,i = 10, NEp,i = 50, NE,i = 50.
As we described in subsection 3.3.3, these initial conditions yield significantly
different curves. We show a comparison of these results to the deterministic
and ABK-simulated SR curves for the respective homogeneous populations in
Figure 4.12. It is evident that the heterogeneous population SR curves, sampled
at integer values of NS , appear to lie above the respective homogeneous ones
in part of or beyond the deterministic region of bistability. We address if this
trend is statistically significant by applying the two-sample (heterogeneous vs.
homogeneous populations) right-tailed t-test. Therefore, for each value of NS ,
we evaluate the test statistic

tNS
=
<N∗

R,HET > − <N∗
R,HOM >√

1
n (s2

HET + s2
HOM )

, (4.30)

where the designations HET and HOM denote quantities obtained from simu-
lations of heterogeneous and homogeneous populations respectively. The quan-
tity s is the observed standard deviation, and n is the number of observations in
each sample (i.e., the number of times we repeated the simulation). In this case,
n = 1000, which is large enough to ensure that there is a high number of degrees
of freedom, so the t-distribution is essentially the normal distribution. We can
then conclude that ∆ <N∗

R>≡<N∗
R,HET > − <N∗

R,HOM > is greater than 0 at
the 99% confidence interval when tNS

> 2.326 (this is the normal distribution’s
z-value for α = 0.01). We plot ∆ <N∗

R> for each value of NS in Figure 4.13a,
and emphasize the statistically significant points by enlarging them (Table 4.1
lists the relevant p -values). We also show the difference in the standard de-
viations SDev{< N∗

R,HET >} − SDev{< N∗
R,HOM >} as a function of NS in

Figure 4.13b. Finally, we plot the difference in the percentage of simulations
where the system ended up in the ON state in Figure 4.13c, where we define
∆%ON ≡ %ONHET − %ONHOM . It is noteworthy that ∆%ON = 7 − 9%
for some values of NS in the region of bistability, indicating that this nominal
presence of heterogeneity (involving only one parameter in one process of the
motif) can have a significant impact on the observable properties of the system.
For instance, an experimenter harvesting a population of cells at a particular
time point after the beginning of an experiment can record significantly differ-
ent measurements of the aggregate behavior, as long as the measured quantity

presence of heterogeneity in a species with a fixed range in population size, as in this case
where 0 ≤ NE(t) ≤ NE,T OT .
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Figure 4.11 – Heterogeneity in the mutual activation switch motif: sample time trajecto-
ries. We used the ABK algorithm to model the time evolution of species R, Ep and E in the
mutual activation hysteretic switch motif. We consider this motif with the following param-
eters: kb = 0.02 sec−1, ks = 0.05 sec−1, kd = 0.075 sec−1, kf = 1 sec−1, kr = 0.05 sec−1,
KM,f = 5, NE,T OT = 100, NS = 15, and initial population sizes NR,i = 0, NEp,i = 0,
NE,i = 100. The population of species E is heterogeneous with respect to the Michaelis
constant for the reverse reaction in the conversion Ep ⇋ E: < KM,r(t = 0) >= 10,
SDev{KM,r(t = 0)} ≈ 9.05, with two subspecies, E1 and E2, of equal initial subpopula-
tion sizes (fractional abundance χE1 = 0.5 = χE2; index of heterogeneity ψ = 0.50). In
each case, the simulation was performed with fixed time step increments of ∆t = 0.01 sec
for a total simulated time of 1500 sec. Given the initial condition, this system composed of
homogeneous populations is deterministically predicted to stay in the OFF state (low NR;
deterministic N∗

R = 11.43). In panel b, a noise-induced transition to the ON state occurs
in the time window of 300 − 600 sec (high NR; deterministic N∗

R = 33.12). We also plot
<KM,r(t) >, whose fluctuations become noticeably larger when NE is low (switch state
ON). Note that the legend in the top panel applies to both plots.

224



0 4 8 12 16 20 24 28

0

5

10

15

20

25

30

35

40

45

a)

0 4 8 12 16 20 24 28

0

10

20

30

40

50

60

70

80

90

100

b)

Figure 4.12 – Heterogeneity in the mutual activation switch motif: SR curve. We used the
ABK algorithm to simulate the mutual activation switch motif with the same parameters as
listed in Figure 4.11 that account for heterogeneity inKM,r values in the population of species
E, and integer values of the signal species in the interval 0 ≤ NS ≤ 30. The total simulated
time was 1500 sec with fixed time step increments of ∆t = 0.02 sec. We averaged the
population sizes over the last 750 sec to estimate N∗

R for each simulation. We then repeated
this procedure 1000 times to obtain statistical measures of the N∗

R distribution. We show
the results of the simulation for two sets of initial population sizes: NR,i = 0, NEp,i = 0,
NE,i = 100 (i.e., the switch starts out in the OFF state’s basin of attraction), andNR,i = 10,
NEp,i = 50, NE,i = 50. We then compare them to identical simulations of the respective
homogeneous populations (n = 1000). The legends in both panels indicate whether the
curves were obtained from simulating homogeneous or heterogeneous populations with the
descriptors HOM and HET respectively. a) <N∗

R> from the ABK simulation of the system
with a heterogeneous E population superimposed on the deterministic SR curve and average
N∗

R obtained from simulating homogeneous populations. We only show the error bars in
the heterogeneous case for clarity (each half of the error bars is one standard deviation from
the mean). b) Plot of the frequency of the system being in the ON state for each NS

value. The vertical orange dashed lines show the range of NS values for which the system is
deterministically predicted to be bistable.
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Figure 4.13 – Heterogeneity in the mutual activation switch motif: differences in <N∗
R >,

SDev{<N∗
R >}, and switch state. We further analyze the results presented in Figure 4.12

by showing the difference in <N∗
R >, SDev{<N∗

R >}, and the percentage of simulations
ending up in the ON switch state. The deterministically predicted region of bistability is
shown as vertical dashed orange lines in all panels. a) We plot ∆ <N∗

R >≡<N∗
R,HET >

− < N∗
R,HOM > as a function of NS . The enlarged markers correspond to statistically

significant differences in < N∗
R > at the 99% confidence interval (see Table 4.1 for a list

of the p -values). b) Difference in the standard deviation, ∆SDev{<N∗
R >} ≡ SDev{<

N∗
R,HET >} − SDev{<N∗

R,HOM >}, as a function of NS . c) Difference in the percentage
of simulations where the system ended up in the ON state at the end of simulated time
(1500 sec), defined as ∆%ON ≡ %ONHET − %ONHOM , as a function of NS .
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NR,i = 0, NEp,i = 0, NE,i = 100 NR,i = 10, NEp,i = 50, NE,i = 50
NS p NS p

18 2.15 × 10−4 11 9.84 × 10−3

19 5.88 × 10−4 12 5.75 × 10−4

21 8.08 × 10−3 14 6.64 × 10−5

26 1.25 × 10−3 15 1.25 × 10−5

27 6.41 × 10−4 16 3.45 × 10−3

30 1.88 × 10−3 17 1.44 × 10−7

18 1.49 × 10−3

19 2.48 × 10−3

21 5.82 × 10−3

24 1.29 × 10−3

27 6.71 × 10−3

28 3.70 × 10−4

30 8.10 × 10−3

Table 4.1 – Heterogeneity in the mutual activation switch motif: p -values for statistically
significant differences in <N∗

R >. We list here the p -values for the cases where ∆ <
N∗

R>≡<N∗
R,HET > − <N∗

R,HOM > > 0 at the 99% confidence interval.

correlates with the sum of each individual cell’s switch state (e.g., fluorescence
intensity of a reporter protein such as GFP).

This case study highlights the importance of having a simulation tool for
modeling the effects of heterogeneity on system dynamics because it is difficult
or impossible to have an a priori expectation for how heterogeneity will influence
the system’s emergent properties. Here, we observed that the mutual activation
motif has a small but statistically significant tendency toward higher N∗

R values
and being in the ON switch state when there is diversity in the KM,r values of
E agents.
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4.11 Negative Feedback 2-Component Motif with
Heterogeneity in the Explicit Time Delay

We now return to a motif we examined for the case of homogeneous populations
in subsection 3.5.2, where we saw the effect of specifying an explicit time delay in
one of the processes on oscillatory activity. Here, we will extend this discussion
to different ways that heterogeneity could be manifested and their effect on the
system’s oscillatory dynamics.

We remind the reader the processes involved and their connectivity in the
negative feedback motif below (same as in Figure 3.37):

The computational experiments we will present will again focus on the reg-
ulation of the 2nd order degradation of R (with rate constant kd2) by species
Xp, and introduce heterogeneity in the following two ways:

1. The delay value, δ, is not constant, but is instead sampled from a user-
specified distribution. Specifically, we use here a normally-distributed
delay value. The delay for the ith agent in the population of R, δi, in each
time step of the simulation is determined by drawing a random number,
rn, from the standard normal distribution, and evaluating the expression

δi = δ + σδ rn , (4.31)

where the mean and standard deviation of the distribution are given by
the parameters δ and σδ respectively. We will use the values δ = 50 sec
and σδ = 10 sec for the studies we will present later in this section.
The probability that the ith R agent is degraded depends on NXp and is
computed in each time time step of duration ∆t using15

PRi+Xp→∅(t, δi) = kd2NXp(t− δi) ∆t , (4.32)

for t > δi. We assume that all agents of R have a nonzero delay value
associated with their probability of being degraded. Notice that the pop-
ulation of Xp remains homogeneous in this scenario, hence it is the total

15We show here the form of transition probability derived from the discretized differential
kinetic rate law for this process, or Pdif . We have also performed these simulations using the
Pber form and obtained results indistinguishable (in the aggregate) from the ones presented
below.
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population size, NXp, that is used in the above expression. It is only the
variation in the delay parameter associated with individual R agents that
constitutes the presence of compositional and temporal heterogeneity in
the motif.

2. Only a fraction of the population of R consists of agents with a nonzero
delay value (we will refer to this subspecies as R1), and the remainder have
δi = 0 (i.e., no delay; subspecies R0). The average fractional abundance of
the delay-sensitive subspecies we use here is <χR1>= 1/2, so that when
an R agent is created through a 0th order process (with rate constant kb
and ks) we randomly choose if it has a nonzero delay with probability
1/2. This way, at any given time of the simulation approximately half of
the population of R consists of agents with a nonzero δ value and whose
transition probability is given by equation 4.32.
The corresponding transition probability for an agent of subspecies R0 is,
of course,

PR0+Xp→∅(t) = kd2NXp(t) ∆t , (4.33)

reflecting the fact that no delay is taken into account. Therefore, hetero-
geneity is encoded in the presence of two distinct subspecies of R, an agent
being distinguished as a member of either subspecies by the boolean at-
tribute of dependence on a delay with respect to the degradation process.
Beyond this, the R1 delay could be a constant value or sampled from a
distribution. Here, we will explore both of these possible cases.

Follow this link to
see the Matlab code.

We simulated four distinct cases of this motif to explore the effects of the dif-
ferent forms of heterogeneity outlined above: a) all agents of species R are
sensitive to a constant delay value of δ = 50 sec, therefore this case is identical
to the one presented in subsection 3.5.2 on homogeneous populations;16 b) all
agents of species R are sensitive to a normal distribution of delay values with
δ = 50 sec and σδ = 10 sec, and the details of the implementation are described
in 1, above; c) only subspecies R1 (with <χR1>= 1/2) is sensitive to a constant
delay value of δ = 50 sec; d) only subspecies R1 (with <χR1>= 1/2) is sensitive
to a normal distribution of delay values with δ = 50 sec and σδ = 10 sec. We
show the results of these simulations in Figures 4.14-4.17 (the plot labels in fig-
ures 4.14 and 4.15 preserve the case identification a-d). We will not dwell on the
features of the simulated trial and average trajectories that we have encountered
before (see section 3.5). Instead, we highlight the effects of heterogeneity on the
system’s behavior.

The sample time trajectories in Figure 4.14 show that splitting the popula-
tion of R into two distinct subspecies results in the loss of consistent oscillatory
activity (panels c, d). Moreover, where a peak is unmistakably present, its

16The only parameter that is different is the initial period when the system was simulated
without time delays. Here we use the time period 0 − 100 sec (instead of 0 − 50 sec in Fig-
ure 3.41); this accounts for δ being normally-distributed in some of the ensuing cases. This
parameter change causes the DDE solution to feature a smaller amplitude of the predicted
oscillations.
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height or value of NR at the top of the peak is smaller than when all R agents
are delay-sensitive (plots a, b). The difference in peak heights between the dif-
ferent cases also results in a proportional change in the standard deviation of
the average trajectories (e.g., shown for <NR(t)> in Figure 4.15).

We quantified this difference in peak heights by applying a filtering method
to smooth out the stochastic trajectories and then detecting peaks that cor-
respond to instances of oscillatory activity (see details in the caption of Fig-
ure 4.16). We used a set of peak detection parameters that reliably picked out
the desired feature in the simulated trajectories of cases a, b, and then applied
the same parameters for the remaining cases. This resulted in progressively
fewer peaks being detected when distinct R subspecies are present and a distri-
bution of delay values is used (985, 950, 706, 676 detected peaks in cases a-d,
respectively; this data was aggregated by repeating the simulation of each case
100 times). The average of the detected peak heights in the respective cases are
104.6 ± 24.8, 100.0 ± 21.2, 80.5 ± 8.4, 77.6 ± 8.2 (mean ± standard deviation),
indicating that the peak heights are significantly reduced in the presence of
distinct subspecies. We also plot the observed distribution of peak heights in
Figure 4.17a, which verifies the much narrower range of peak heights in cases c,
d.

We also collected data on the time intervals between successive detected
peaks. This allowed us to plot the observed distributions of peak intervals for
each of the four cases (Figure 4.17b). It is clear that the distributions become
wider when the delay value is not constant and the population of R consists
of distinct subspecies. This is at least in part due to the fact that fewer peaks
were detected when subspecies were present, thus the time intervals between
them tend to be longer (for an example of this, compare panels a and b in
Figure 4.16).

Our computational experiments using the ABK method have once again
shown that population heterogeneity with respect to only one process can sig-
nificantly affect the behavior of a relatively simple system. In this case, we saw
that a distribution of the delay parameter of a degradation process leads to less
well-defined oscillatory activity produced by the 2-component negative feedback
loop.
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Figure 4.14 – Heterogeneity in the negative feedback 2-component motif with delay:
sample time trajectories. We used the ABK algorithm to model the time evolution of the
negative feedback 2-component motif with a delay in the feedback reaction (R+Xp → ∅).
We use the same kinetic parameters as we did in subsection 3.5.2 (see Figure 3.41), ex-
cept the initial period when the system (ABK and deterministic trajectories) was simu-
lated without time delays is 100 sec (instead of 50 sec) to account for the cases when
δi > 50 sec. The numerical solution to the set of DDEs use the initial 100 sec period as
history. For convenience, we list the kinetic and simulation parameters again: kb = 0 sec−1,
ks = 0.100 sec−1, kd1 = 0 sec−1, kd2 = 0.005 sec−1, kf = 0.010 sec−1, kr = 1.000 sec−1,
Michaelis constants KM,f = KM,r = 10, constant signal population size NS = 30, ini-
tial population sizes NR,i = 0, NXp,i = 0, and total population of species X and Xp,
NX,T OT = NX(t) + NXp(t) = 100. We simulated this motif for a total time of 2000 sec,
with fixed time step increments of ∆t = 0.01 sec. The four cases we show here (a-d) are
described in the text. We have omitted the time trajectory of subspecies R1 in panels c, d
for clarity.
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Figure 4.15 – Heterogeneity in the negative feedback 2-component motif with delay:
average time trajectories. We show here the average population sizes after 100 repetitions
of the simulation. The four cases we show here (a-d) are described in the text. The gray
dashed curves denote the one-standard-deviation envelope for < NR(t) > (not shown for
species Xp). The average trajectory of subspecies R1, <NR1(t)>, is also shown in plots c
and d (solid black curve), and is approximately half of <NR(t)>, as expected given that
the 0th order birth process produces R agents such that < χR1 >= 1/2. Notice that the
standard deviation of <NR(t)> when the population of R consists of distinct subspecies
(plots c and d) is smaller than when all R agents are delay-sensitive (plots a and b). This
is because the fluctuating population sizes are confined to a narrower range of values when
there are distinct subspecies (also supported by the observed distribution of peak heights in
Figure 4.17a).
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Figure 4.16 – Heterogeneity in the negative feedback 2-component motif with de-
lay: trajectory smoothing and peak detection. We used the Savitzky-Golay smooth-
ing filter to remove the noise and obtain smooth time trajectories (Matlab function:
sgolayfilt, run with a frame length of 60 sec and a polynomial order of 5; see doc-
umentation at http://www.mathworks.com/help/signal/ref/sgolayfilt.html). We then de-
tected the peaks using the Matlab function findpeaks with parameters: species R,
minimum peak prominence = 26 (consider peaks that drop off on both sides by at least this
number), minimum peak height = 65, minimum peak distance = 45 sec (avoid detecting
peaks that are too close in time to each other); species Xp: minimum peak prominence =
7, minimum peak height = 14, minimum peak distance = 45 sec. We show here repre-
sentative simulated trajectories, along with their smoothed counterparts and detected peaks.
We performed the smoothing and peak detection procedures for all simulated trajectories
(100 repetitions for each of the four cases described in the text).
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Figure 4.17 – Heterogeneity in the negative feedback 2-component motif with delay:
distribution of peak heights and time intervals. Since the number of NR detected peaks
was different in each of the four cases we examined (985, 950, 706, 676 peaks in cases a-d,
respectively; this data was aggregated by repeating the simulation of each case 100 times),
we compare them by normalizing their respective histograms and using the same bin width.
We then superimpose them by plotting each with a different level of transparency so that
the distributions remain visible to the reader. a) Distributions of detected peak heights. The
average of the peak heights in the respective cases, as ordered from top to bottom in the
legend, are 104.6 ± 24.8, 100.0 ± 21.2, 80.5 ± 8.4, 77.6 ± 8.2 (mean ± standard deviation,
in units of the population size NR). b) Distribution of the time intervals between successive
peaks. The respective means are 193.9 ± 50.6, 207.1 ± 58.4, 244.8 ± 139.9, 241.4 ± 151.3
(mean± standard deviation, in units of sec). Note that the legend, shown only in a, applies
to both plots.
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4.12 Sensitivity Analysis with Respect to Mea-
sures of Population Heterogeneity

Sensitivity analysis is used to assess how the dynamical behavior of a system’s
output variables depends on variations in the parameters of the involved pro-
cesses. The method we present in this section allows us to determine the effect
of heterogeneity on simulated population time trajectories. For instance, we
can vary the initial species- or interaction-specific index of heterogeneity, ψi,17

by using an identical sequence of (pseudo-)random numbers (accomplished by
specifying the same seed value for the random number generator) for each pair
of simulations with parameter values ψi and ψi + ϵ, where ϵ represents the
magnitude of a small but finite perturbation to ψi. This method is sometimes
referred to as the common random numbers procedure (CRN; Glasserman and
Yao, 1992). After repeating this procedure many times, each with a different
seed value for the random number generator, we can then compute the finite
difference between each pair of mean trajectories and estimate their sensitiv-
ity (Gillespie et al., 2013; Rathinam et al., 2010) to changes in ψ,

sens {Nj(t; ψi), ϵ} = <Nj(t; ψi + ϵ)> − <Nj(t; ψi)>
ϵ

, (4.34)

where we have used the notation Nj(t; ψi) to denote the dependence of the
jth species’ time trajectory to ψi. Note that ψi can represent the degree of
heterogeneity in any of the species in the system participating in a 1st order
process or any intra/interspecies interaction in 2nd and higher order processes.
Furthermore, we can also compute the sensitivity of the variance or higher
order moments with respect to ψi by appropriately adjusting the numerator of
equation 4.34.

Although we have singled out ψ for assessing the effect of heterogeneity on
population dynamics, sensitivity analysis can be performed with respect to any
parameter of interest associated with a particular agent or agent-agent inter-
action, or other population-wide metrics such as the average, k, and variance,
V ar{k}, of the kinetic constant values.

Other software tools and packages exist that use deterministic derivative-
based methods for performing sensitivity analysis with respect to parameters of
ODE models (e.g., Domijan et al., 2016), which is computationally much faster
than using ensembles of stochastic simulations (with either ABK or SSA) to
accomplish the same analysis. However, as we have seen in several examples
in this work, ODEs do not give insight into the uncertainty in the population
trajectories and small population sizes can give surprising results that the deter-
ministic approach may inadequately describe or altogether miss. Importantly,
only the ABK method can address the effect of heterogeneity on population
dynamics. We therefore recommend that an ABK-based sensitivity analysis be

17We emphasize that this is the initial value of ψi = ψ(t=0), because the index of hetero-
geneity will be time-dependent as the population structure and size of a species or subspecies
change during their time trajectories.
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performed when simulating systems that include species with small population
sizes and where compositional/temporal heterogeneity are known or suspected
to exist.
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4.12.1 Case Study: Sensitivity Analysis of the Mutual Ac-
tivation Switch Motif

We now present an example of applying the CRN procedure and sensitivity
analysis described in the beginning of this section. We return to the hysteretic
switch resulting from the mutual activation motif (section 4.10), and use equa-
tion 4.34 to compute the sensitivity of both species R and Ep to heterogeneity
in the Michaelis constant KM,r. We use the same set of parameters as listed in
Figure 4.11, except we use the following two marginally different initial popu-
lations of E with respect to KM,r:

1. 50 agents of subspecies E1 have KM,r = 1 and 50 E2 agents have KM,r =
19. We will refer to simulations of this initial population structure as
HET1 (initial index of heterogeneity, ψi,HET1 = 0.5050; computed using
equation 4.1). Note that species E has the same population structure as
the one we investigated in section 4.10.

2. 51 agents of subspecies E1 have KM,r = 1 and 49 E2 agents have KM,r =
19. We will refer to this as HET2 (ψi,HET2 = 0.5048).

Recall that the initial population size NE,i = NE,TOT = 100, and that NE(t) +
NEp(t) = NE,TOT = 100. Accordingly, we need only show the time trajectory
of either species Ep or E.

Follow this link to
see the Matlab code.

In summary, the only difference between these two population structures is
that a single E2 agent now belongs to subpopulation E1 in HET2, thus having
a low KM,r value. Considering that the KCF of the ith E agent is

Ω(i)
E = kr

NR(t)
K

(i)
M,r +NE(tn)

, (4.35)

a lower KM,r value will result in a higher transition probability. Therefore, all
of the ensuing results from this computational experiment are dependent on this
differential propensity of an E agent to transition to Ep.

We first present a sample time trajectory of species R and Ep in Figure 4.18.
We have used the same seed value for the random number generator to simulate
the trajectories of the two cases, which start in the neighborhood of the OFF
switch state (initial condition: NR,i = 0, NEp,i = 0, NE,i = 100) and begin
deviating from each other at t ≈ 53 sec. From that point forward, the trajecto-
ries differ significantly with respect to the switch state the system is in (OFF:
low NR, low NEp, high NE ; ON: high NR, high NEp, low NE). This sample
computation shows that a change in a parameter value of a single E agent can
have a dramatic effect on the computed population time trajectories, especially
in a system that is prone to noise-induced switch state reversals.

We simulated this motif with the HET1 and HET2 population structures
1000 times, as described above. This allowed us to compute the mean trajecto-
ries and their standard deviations for all species. Figure 4.19a shows that the
average population sizes for both species R and Ep increase with time. This
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Figure 4.18 – Heterogeneity in the mutual activation switch motif: sample time trajecto-
ries using CRN. We simulated the hysteretic switch motif resulting from the R–Ep activation
loop using the same parameters as indicated in section 4.10 (initial condition: NR,i = 0,
NEp,i = 0, NE,i = 100, and NS = 15), except here the simulated time is 0 − 10000 sec
and we compare two different initial population structures of species E: HET1, 50 agents of
subspecies E1 have KM,r = 1 and 50 E2 agents have KM,r = 19; and HET2, 51 agents
of subspecies E1 have KM,r = 1 and 49 E2 agents have KM,r = 19. We used the CRN
method by initializing the random number generator in both simulations with the same seed
value (in this case, the seed value is 8; Matlab command: rng(8)). We observed that the
trajectories of the same species from the two simulations begin deviating from each other
at t ≈ 53 sec. For clarity, we show the trajectories in two separate panels: a) species R,
b) species Ep. We indicate in panel a three noise-induced switch state reversals that oc-
curred in the simulated time window. The simulations end up at different switch states at
t = 10000 sec. Switch states: OFF, low NR, low NEp (high NE); ON, high NR, high NEp

(low NE).
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is an unexpected trend because at any given time point the system is found
in one of the two switch states. This increase as indicative of the fact that
the cumulative probability of a noise-induced switch state reversal (from initial
state OFF to ON) increases with time, therefore an average over all simulation
runs at a particular time point reflects the proportion of runs where the sys-
tem is in the ON state. Moreover, the HET2 average trajectories are higher
in value than the corresponding HET1 ones, suggesting a higher propensity
for the system to be in the ON state in the HET2 case. This effect is more
pronounced when comparing the <NEp(t)> trajectories because the species-
specific difference in population sizes between the ON and OFF states is greater:
N∗
Ep,OFF = 5.35, N∗

Ep,ON = 86.69 vs. N∗
R,OFF = 11.43, N∗

R,ON = 33.12 (these
are the deterministically-predicted stable fixed points assuming homogeneous
populations). That is, N∗

Ep,ON − N∗
Ep,OFF > N∗

R,ON − N∗
R,OFF . Accordingly,

trajectories that have transitioned to the ON state will have a greater numeri-
cal affect on <NEp(t)> than <NR(t)>. Thus, the magnitude of the average
trajectories is a reflection of the aggregate behavior and can be thought of as a
proxy for the propensity of the system to be in the ON state.

We demonstrate that the average trajectories reveal the differential tendency
to be in one of the switch states by showing the percentage of simulation runs
that are in the ON state in Figure 4.20. It is clear that the HET2 case produces
a greater proportion of ON states than HET1, with the difference being as high
as 4% (see inset plot in Figure 4.20). We see therefore that the presence of a
single E agent in case HET2 that can transition to Ep more easily results in
significant differences with respect to the switch state the system is in.

We now proceed with performing sensitivity analysis on this motif’s behav-
ior with respect to heterogeneity. The difference between the values for the
respective indices of heterogeneity is

ϵ = ψi,HET1 − ψi,HET2 = 0.5050 − 0.5048 = 2.02 × 10−4 . (4.36)

We can then use equation 4.34 to compute the sensitivity of the average trajec-
tories and their standard deviations (shown in Figures 4.19b and 4.21b, respec-
tively). The sign of the sensitivity values for either species R or Ep is predom-
inantly negative because HET2 produces higher-valued mean trajectories and
standard deviations than HET1. Moreover, the magnitude of the sensitivity for
species Ep is greater than for R, as explained in the preceding paragraphs.

The above results, obtained by performing computational experiments using
the ABK algorithm, suggest that a single change in the structure of a population
can have measurable effects on the system’s simulated time evolution. Further-
more, our presentation of this motif as a case study on the use of sensitivity
analysis with an ensemble of ABK simulations demonstrates that this method
can provide useful insights on the role of heterogeneity on a system’s dynamical
properties.
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Figure 4.19 – Heterogeneity in the mutual activation switch motif: mean time trajectories
and sensitivity analysis. We repeated the simulation of the mutual activation motif 1000
times (simulated time: 0 − 5000 sec). Each repetition was initialized with a different seed
value for the random number generator (see Figure 4.18 for a sample simulation using the
CRN method). This ensemble of simulation runs allowed us to calculate the average trajecto-
ries of all species given the two different initial population structures of E (HET1, HET2, as
defined in the text and Figure 4.18). a) Mean trajectories for species R and Ep given HET1
and HET2. b) Sensitivity of species R and Ep given their respective average trajectories
and the difference in the index of heterogeneity, ϵ = ψi,HET 1 − ψi,HET 2 = 2.02 × 10−4

(computed using equation 4.34). The HET2 average trajectories are consistently higher than
the HET1 ones, therefore the sensitivity values are predominantly negative.
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Figure 4.20 – Heterogeneity in the mutual activation switch motif: differential fraction of
simulation runs in ON state. We plot the percentage of simulation runs (n = 1000) that
were classified as being in the ON state at each time point in the simulations. All simulation
parameters are the same as in Figure 4.19. We used the trajectories of species Ep for the
classification because the difference between the deterministically-predicted fixed points is
larger than for species R (N∗

Ep,OF F = 5.35, N∗
Ep,ON = 86.69). Specifically, we used the

following heuristic for the classification:
∣∣NEp(t) −N∗

Ep,ON

∣∣ < 1
4

(
N∗

Ep,ON −N∗
Ep,OF F

)
.

The difference in %ON between the HET1 and HET2 cases is statistically significant (p =
2 × 10−225 for the full time series; computed using the two-sample t-test). The inset
plot shows more clearly the time dependence of the difference between the proportion of
trajectories in the ON state: ∆%ON ≡ %ONHET 1 − %ONHET 2.
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Figure 4.21 – Heterogeneity in the mutual activation switch motif: standard deviation of
time trajectories and sensitivity analysis. All parameters and methods are the same as in
Figure 4.19, except we plot the time dependence of the standard deviation from the ensemble
of simulated trajectories and its sensitivity to ψi. The sensitivity of the standard deviation,
sens {SDev {<Nj(t; ψi)>} , ϵ}, was computed using the general form in equation 4.34,
where the mean was replaced by the standard deviation. Note that the species-specific color
scheme is the same as in Figure 4.19.

242



Closing Remarks

In this work, we have considered populations as consisting of distinct individuals,
or agents, whose kinetic properties can be explicitly specified and taken into
account when simulating their trajectory in a system’s state space. Using the
algorithmic framework we developed in the preceding chapters, a modeler can
perform computational experiments to investigate the effects of heterogeneity on
a system’s dynamics. Moreover, the assumption of a well-mixed system allows
for an investigation of the mechanisms that give rise to or the consequences of
heterogeneity in idealized scenarios where any potentially complicating factors
(such as the presence of spatial barriers) are absent. Given the generality of
our approach, we believe that the results we have presented in this work can be
relevant to all fields where the notion of a (heterogeneous) population exists.

In summary, we have shown that ABK is a flexible and easily extensible
method for simulating the time evolution of homogeneous or heterogeneous pop-
ulations. Some of its advantages over other methods are: a) it can be easily
implemented to account for both compositional and temporal heterogeneity in
populations; b) it is useful in modeling a diverse array of phenomena spanning
many fields within the biological and physical sciences; c) it is not limited to
the simulation of up to bimolecular reactions/processes (higher order processes
can be simulated, if necessary); d) it can be used to model agent interactions
that can be represented as a directed or undirected graph. Moreover, although
we have focused here on the binary representation of an agent’s state, we will
show in future work how the method can be easily extended to handle multi-
state agents (Stefan et al., 2014) and the specification of rules governing state-
dependent agent interactions.

The ABK method is undoubtedly computationally intensive, and the SSA
(Gillespie’s algorithm) is the preferred approach when homogeneity is assumed.
Indeed, one should simulate all the processes and motifs we presented in Chap-
ters 2 and 3 using the SSA if time and computational speed are of importance.
Our aim in those chapters was to validate the ABK method for a large number of
cases where we could compare its output to predictions obtained either through
the deterministic formalism, CME, or SSA (this also allowed us to consider the
limitations of the different approaches). Furthermore, we have used the method
to simulate the basic processes and collections thereof that form a large part
of a basis set for the functionality that higher order systems depend on. In
the context of cell biology, for instance, we envision that researchers aiming to
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simulate the behavior of a whole cell (Karr et al., 2015) could use ABK for
cellular subsystems or modules where there is prior knowledge of and data on
the presence of heterogeneity (e.g., subpopulations of a given protein’s isoforms
in eukaryotic cells). Alternatively, an exploratory approach can be used to ex-
amine the effects of a distribution of parameter values across the agents of a
species population on an observable property or properties of the system.

The Matlab code we have authored to perform the simulations presented in
this work should be considered a prototype, and we are keenly aware of the fact
that it can be improved to achieve better performance. For instance, some parts
of the code can be vectorized to take advantage of libraries that are optimized for
matrix manipulation and computation. Importantly, since our method relies on
creating an ensemble of simulations to obtain statistical measures of a system’s
dynamical behavior, parallelization of the executed code in multi-core processors
and clusters will yield a significant boost in performance. We will work toward
optimizing the ABK codebase and plan on coding a programming interface that
will automate part of the simulation workflow, thus facilitating the method’s
adoption and use by researchers. Part of this effort will require porting the
code to a more widely used open-source language (such as Python) so that it
can be freely and more easily accessed by interested users around the world.

Given the generality and wide applicability of the ABK methodology, we
anticipate that it will be a useful modeling tool for probing the complex in-
terplay between interspecies and inter-agent connectivity, stochasticity in low
copy number populations, and compositional or temporal heterogeneity. It is
our hope that the cases we have investigated in this work will inspire further
computational studies and inform the design of experiments aimed at testing
their predictions in real populations.
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Appendix A

The Chemical Master
Equation for Selected
Processes

The chemical master equation (CME) describes the time-dependent probability
distribution of the discrete population size of the species involved in a set of
processes. As we will see by briefly studying a handful of case studies, the
general form of a CME can be succinctly written as

∂Pn(t)
∂t

=
∑
n′

T (n|n′)Pn′(t) −
∑
n′′

T (n′′|n)Pn(t) , (A.1)

where Pn(t) is the probability1 of the population size being n at time t, n′ and
n′′ are the allowed alternate states of the system that transition to and from n
respectively. T (n|n′) and T (n′′|n) are the conditional transition probabilities of
going from a given state to another. The sum runs over all possible population
sizes n′ and n′′ that are related to n according to the stoichiometry of the defined
processes. Essentially, the first term in the above sum represents the processes
through which the population can end up having size n (i.e., flux entering state
n), while the second term shows how a population of size n can transition to
other states (flux exiting state n).

It is evident that the CME is really an infinite set of coupled equations,
since it can be written for each of the possible combinations of n and n′ or
n′′. Hence, it cannot be solved analytically in all but the simplest of cases.
Here, we present how to construct the CME of 0th , 1st, 2nd order, and birth-
death processes, and use it to obtain statistical measures of the population
time trajectories. Additionally, we will explore how the predictions of the CME

1This is really a conditional probability that can be fully written as P (n, t|n0, t0), reflecting
the fact that the system is subject to initial population sizes at time t0. We use a simplified
notation here to symbolize this probability.
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relate to deterministic ones. However, we will not discuss in detail how the
solution to the CME is obtained in the cases we will examine. The interested
reader can consult McQuarrie (1967) or Lecca et al. (2013b) and the references
therein for further study. We also point the reader to a rigorous derivation of
the CME (Gillespie, 1992) from a minimal set of premises whose origin lies in
microphysical considerations and elementary concepts of probability theory.

A.1 1st Order Process
We will now derive the CME as applied to the 1st order process

A
k−→ X ,

where k is the rate constant with units sec−1. For notational simplicity and
readability since there is only one species to keep track of, we will denote the
population size of A as n.

Let Pn(t) denote the probability of the system consisting of n agents of A at
time t. Given knowledge of the population size at time t, we seek an expression
for the probability Pn(t+ dt), where dt is a sufficiently small time interval such
that only one occurrence of the process takes place.

There are two distinct ways in which the number of agents will be n at t+dt:
i) there were n+ 1 agents at time t and a transition event takes place in dt, and
ii) there were n agents at time t and no occurrence of the process takes place in
dt. The probability Pn(t+ dt) can then be written as

Pn(t+ dt) = k (n+ 1) dt Pn+1(t) + (1 − k n dt)Pn(t) . (A.2)

Notice that the first term of the above expression is scaled by the rate constant,
a statistical factor of the number of agents present at time t, and the time
interval dt. The statistical factor signifies that there are n+1 ways in which the
said process can occur when the population size at time t is n+1. Therefore, the
overall factor that Pn+1(t) is multiplied by is k (n+ 1) dt, which can be thought
of as the transition probability for the population size being reduced from n+ 1
to n. In the second term on the right-hand side of the above equation, 1−k n dt
is the probability that the process does not occur given that n agents exist at
time t.

We proceed by rearranging the above equation and dividing both sides by
dt to obtain

Pn(t+ dt) − Pn(t)
dt

= k(n+ 1)Pn+1(t) − k nPn(t) . (A.3)

Taking the limit as dt → 0, we see that the left-hand side of this equation is the
partial derivative of P with respect to time,

∂Pn
∂t

= k [(n+ 1)Pn+1 − nPn] . (A.4)
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Note that we dropped the notation indicating the explicit dependence on time to
minimize notational clutter. This last result is the CME for a 1st order process
and it fits the general from of the CME (equation A.1).

The steady-state solution is n∗ = 0 (i.e., the population of A is depleted).
The reader can ascertain using equation A.4 that the probability of this state
is P0 = 1.

A.1.1 Relationship to Deterministic Prediction
We remind the reader that the ODE for a 1st order process is

dn

dt
= −k n , (A.5)

and its solution given the initial condition n(0) = n0 is

n(t) = n0 e
−kt. (A.6)

We explore the relationship between the probabilistic and deterministic ap-
proaches by multiplying both sides of the CME (equation A.28) by n and then
summing over all n.

∂

( ∞∑
n=0

nPn

)
∂t

= k

[ ∞∑
n=0

n(n+ 1)Pn+1 −
∞∑
n=0

n2Pn

]
(A.7)

Notice that the sum runs from n = 0 to infinity, which suggests that there are
an infinite number of possible integer-valued population sizes. However, it must
be true that Pn(t) = 0 when n > n0 since this is a degradation process (i.e.,
there cannot be more than the initial number of A agents). Therefore, there is
a finite number of values for n and we change the upper limit of the above sums
to reflect the fact that Pn>n0 = 0.

One way to deal with the expression on the right-hand side of equation A.7
is to write out each of the summation terms.

n0−1∑
n=0

n(n+ 1)Pn+1 = 2P2 + 6P3 + 12P4 + . . .+ (n0 − 1)n0Pn0 (A.8)

n0∑
n=0

n2Pn = P1 + 4P2 + 9P3 + 16P4 + . . .+ n2
0Pn0 (A.9)

Subtraction leads to
n0−1∑
n=0

n(n+ 1)Pn+1 −
n0∑
n=0

n2Pn = −P1 − 2P2 − 3P3 − 4P4 − . . .− n0Pn0

= −
n0∑
n=0

nPn . (A.10)
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Substituting these results into equation A.7, we get

∂

(
n0∑
n=0

nPn

)
∂t

= k

(
−

n0∑
n=0

nPn

)
. (A.11)

Recognizing that
n0∑
n=0

nPn =< n >, the above equation simplifies to

d <n>

dt
= −k <n> . (A.12)

This is the same as the ODE for the deterministic formulation of the process
(equation A.6). This means that the average time trajectory of the population
of A is the same as deterministically predicted. Therefore, given the initial
condition <n(0)>= n0, the explicit time dependence of <n(t)> is:

<n(t)>= n0 e
−kt. (A.13)

This result brings attention to the fact that the continuous deterministic ap-
proach to chemical kinetics, as empirically observed in the thermodynamic limit
of large populations, is a consequence of the stochastic formulation; not the other
way around.

A.1.2 Determining the Variance from the CME
We aim to find the time dependence of the variance given the CME for a 1st

order process. We begin by multiplying both sides of the CME (equation A.4)
by n2, and then summing over all n.

∂

( ∞∑
n=0

n2Pn

)
∂t

= k

[ ∞∑
n=0

n2(n+ 1)Pn+1 −
∞∑
n=0

n3Pn

]
(A.14)

We again proceed by writing out the summation terms while keeping in mind
that Pn>n0 = 0,

n0−1∑
n=0

n2(n+ 1)Pn+1 = 2P2 + 12P3 + . . .+ (n0 − 1)2n0Pn0 (A.15)

n0∑
n=0

n3Pn = P1 + 8P2 + 27P3 + . . .+ n3
0Pn0 , (A.16)

which upon subtraction yields
n0−1∑
n=0

n2(n+ 1)Pn+1−
n0∑
n=0

n3Pn = −P1 − 6P2 − 15P3 −. . .− (2n0 − 1)n0Pn0

= −
n0∑
n=0

(2n− 1)nPn. (A.17)

248



We can now substitute A.17 into equation A.14.

∂

(
n0∑
n=0

n2Pn

)
∂t

= k

[
−

n0∑
n=0

(2n− 1)nPn

]
(A.18)

= −2k
(

n0∑
n=0

n2Pn

)
+ k

(
n0∑
n=0

nPn

)
(A.19)

Recognizing that
n0∑
n=0

nPn =<n> and
n0∑
n=0

n2Pn =<n2>, the above equation

is equivalent to
d <n2>

dt
= −2k <n2> +k <n> . (A.20)

This is a 1st order linear ODE and can be solved by using the integrating factor
method.2 Given the initial condition <n2(0)>= n2

0, its solution is

<n2(t)>= n0 e
−kt [1 + (n0 − 1) e−kt] . (A.21)

We can now substitute the result from equation A.21 into the definition of
variance.

σ2 = <n2(t)> − <n(t)>2 (A.22)

= n0 e
−kt [1 + (n0 − 1) e−kt]−

(
n0 e

−kt)2

= n0 e
−kt (1 − e−kt) (A.23)

We have used this expression to calculate the standard deviation of a 1st order
process and to compare it to the results of our ABK simulations (see Figure 2.3).

A.1.3 CME Solution
We have thus far derived the first and second moments of the probability dis-
tribution Pn(t) without access to an explicit solution to the CME. One way to
solve the CME is through the method of generating functions. We will merely
state the result of the method’s application here. The solution is

Pn(t) = n0!
n!(no − n)!

(
e−kt)n (1 − e−kt)n0−n

. (A.24)

This is clearly the binomial distribution with p = e−kt. Since this distribution
has a mean of < n(t) >= n0 p and a variance of σ2 = n0 p(1 − p), we obtain the
same results as in equations A.13 and A.23.

2The interested reader can try solving the ODE with the integrating factor µ(t) = e2kt.
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A.2 Birth-Death and 0th Order Processes
We present here a derivation of the CME as applied to the birth-death process

∅ kb−→ A
kd−→ ∅, (A.25)

where kb and kd are the rate constants for a 0th and 1st order process, respec-
tively. We will also present relevant results for a 0th order process, which is
a special case of the above reaction scheme when kd = 0. As we did in the
preceding section, we will denote the population size of A as n.

Let Pn(t) denote the probability of the system consisting of n agents of A at
time t. Given knowledge of the population size at t, we aim to find an expression
for the probability Pn(t+ dt), where dt is a sufficiently small time interval such
that at most one occurrence of either of the above processes takes place. There
are three ways in which the number of agents will be n at t+ dt: i) there were
n−1 agents at time t and the 0th order process (birth) takes place in dt; ii) there
were n + 1 agents at time t and the 1st order process (death or degradation)
takes place in dt; iii) there were n agents at time t and neither process takes
place in dt. This leads to the expression

Pn(t+ dt) = kb dt Pn−1(t) + kd (n+ 1) dt Pn+1(t) + (1 − kb dt− kd ndt)Pn(t).
(A.26)

As we noted earlier in this Appendix when deriving the CME for a 1st order
process, each of the above three contributions to the expression is scaled by
the appropriate rate constant, time interval dt, and a statistical factor of the
number of agents present at time t. For instance, the birth of an additional
agent of A can occur in only one way, hence the factor is 1 and Pn−1(t) is scaled
by kb dt. Similarly, the degradation of A can occur in n + 1 ways when the
population size at time t is n+ 1, and the overall factor is kd (n+ 1) dt. In the
last term of equation A.26, the expression in parentheses, 1 − kb dt− kd ndt, is
the probability that neither reaction takes place in dt given n agents at time t.

We proceed by rearranging the above equation and dividing both sides by
dt, to obtain

Pn(t+ dt) − Pn(t)
dt

= kb Pn−1(t) + kd(n+ 1)Pn+1(t) − kb Pn(t) − kd nPn(t).
(A.27)

Taking the limit as dt → 0, we see that the left side of this equation is clearly
the partial derivative of P with respect to time,

∂Pn
∂t

= kb (Pn−1 − Pn) + kd [(n+ 1)Pn+1 − nPn] , (A.28)

where we omitted explicit mention of time dependence to minimize notational
clutter. This result is the CME for a birth-death process.

CME for a 0th order process. The above arguments can be repeated when
describing the birth of A in the absence of a degradation process. Setting kd = 0
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in equation A.28 gives the CME for a 0th order process,

∂Pn
∂t

= kb (Pn−1 − Pn) . (A.29)

A.2.1 Steady-State Solution
We now try to solve for the steady-state solution to the CME by setting ∂Pn/∂t =
0.

kbPn−1 + kd(n+ 1)Pn+1 = kbPn + kd nPn (A.30)

(n+ 1)Pn+1 = kb
kd

(Pn − Pn−1) + nPn (A.31)

This last equation suggests that we can obtain a solution recursively. Assuming
P−1 = 0, we initially set n = 0 to obtain:

P1 = kb
kd
P0 . (A.32)

Continuing this process and making successive substitutions to obtain solutions
in terms of P0, we get

P2 = 1
2

(
kb
kd

)2
P0 (A.33)

P3 = 1
3!

(
kb
kd

)3
P0 (A.34)

...

Pn = 1
n!

(
kb
kd

)n
P0 . (A.35)

We can solve for P0 by normalizing the distribution.
∞∑
n=0

1
n!

(
kb
kd

)n
P0 = P0

∞∑
n=0

1
n!

(
kb
kd

)n
= P0 e

kb
kd = 1 (A.36)

Therefore,
P0 = e

− kb
kd , (A.37)

and the solution for Pn is

Pn = 1
n!

(
kb
kd

)n
e

− kb
kd . (A.38)

This result reveals that Pn is a Poisson distribution with an average rate of
kb/kd.
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A.2.2 Relationship to Deterministic Prediction
Interestingly, the probabilistic treatment we have presented yields a nonzero
finite probability of species A becoming extinct: P0 = e−kb/kd . This is clearly
different from the deterministic formulation of this birth-death process, where
n(t) changes monotonically and asymptotically approaches the steady state n∗ =
kb/kd.3 As a brief reminder, the ODE for a 1st order process is

dn

dt
= kb − kd n , (A.39)

and its solution, given the initial condition n(0) = 0, is

n(t) = kb
kd

(
1 − e−kdt

)
. (A.40)

Moreover, we see in the probabilistic formulation that as a result of Pn being
Poissonian, the average steady-state value is < n∗ >= kb/kd. This is the same
result as in the deterministic case.

We can further explore the relationship between the probabilistic and deter-
ministic approaches by multiplying both sides of the CME (equation A.28) by
n and then summing over all n.

∂

( ∞∑
n=0

nPn

)
∂t

= kb

[ ∞∑
n=0

nPn−1 −
∞∑
n=0

nPn

]
+kd

[ ∞∑
n=0

n(n+ 1)Pn+1 −
∞∑
n=0

n2Pn

]
(A.41)

It is straightforward to determine the result of each of the bracketed groups of
terms on the right-hand side of the above equation. Starting with the group
multiplied by kb, we see that

∞∑
n=0

nPn−1 = P0 + 2P1 + 3P2 + 4P3 + . . . (A.42)

∞∑
n=0

nPn = P1 + 2P2 + 3P3 + . . . , (A.43)

such that a subtraction of these two expressions yields
∞∑
n=0

nPn−1 −
∞∑
n=0

nPn = P0 + P1 + P2 + P3 + . . .

=
∞∑
n=0

Pn . (A.44)

3If kb ≥ kd, then n(t) increases monotonically for n(0) = 0 (or more generally, for n(0) <
n∗). Similarly, if kb < kd, then n(t) decreases monotonically for nonzero and positive values
of n(0).
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The group of terms multiplied by kd in A.41 is one we have previously examined
in equation A.7. We determined the result to be

∞∑
n=0

n(n+ 1)Pn+1 −
∞∑
n=0

n2Pn = −
∞∑
n=0

nPn .

Substituting these results into equation A.41, we get

∂

( ∞∑
n=0

nPn

)
∂t

= kb

( ∞∑
n=0

Pn

)
+ kd

(
−

∞∑
n=0

nPn

)
. (A.45)

Finally, recognizing that
∞∑
n=0

Pn = 1 and
∞∑
n=0

nPn =<n>, the above equation

is rewritten as
d <n>

dt
= kb − kd <n> . (A.46)

This is the same as the ODE for the deterministic formulation of the process
(equation A.39). This means that the average time trajectory of the population
of A is the same as deterministically predicted. Accordingly, given the initial
condition <n(0)>= 0, the solution is

<n(t)>= kb
kd

(
1 − e−kdt

)
. (A.47)

Corresponding results for a 0th order process.

The reader can verify that the above method can be applied to obtain the first
moment of n(t) for a birth process. Alternatively, we can use the result of
equation A.46 and set kd = 0, leading to

d <n>

dt
= kb . (A.48)

Notice that the above differential equation has the same form as its deterministic
counterpart (equation 2.107). We can easily obtain the solution,

<n(t)>= kb t , (A.49)

where we have used initial condition <n(0)>= 0. Therefore, the CME predicts
an average time trajectory for the population of A that is identical to that of
the deterministic prediction.

A.2.3 Determining the Variance from the CME
We aim to find the time dependence of the variance for the birth-death process.
We begin by multiplying both sides of the CME (equation A.28) by n2 and then
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summing over all n.

∂

(∞∑
n=0

n2Pn

)
∂t

=kb

[ ∞∑
n=0

n2Pn−1 −
∞∑
n=0

n2Pn

]
+kd

[ ∞∑
n=0

n2(n+ 1)Pn+1 −
∞∑
n=0

n3Pn

]
(A.50)

We proceed as previously by analyzing each of the two groups of terms in the
above equation.

∞∑
n=0

n2Pn−1 = P0 + 4P1 + 9P2 + 16P3 + 25P4 + . . . (A.51)

∞∑
n=0

n2Pn = P1 + 4P2 + 9P3 + 16P4 + . . . (A.52)

Subtraction of the above sums leads to
∞∑
n=0

n2Pn−1 −
∞∑
n=0

n2Pn = P0 + 3P1 + 5P2 + 7P3 + 9P4 + . . .

=
∞∑
n=0

(2n+ 1)Pn . (A.53)

We encountered the second group of terms in equation A.50 when we presented
the CME for a 1st order process (see equation A.14). For convenience, we rewrite
the result (equation ??) below.

∞∑
n=0

n2(n+ 1)Pn+1 −
∞∑
n=0

n3Pn = −
∞∑
n=0

(2n− 1)nPn

We now substitute the simplified forms of the two groups of terms into equa-
tion A.50.

∂

( ∞∑
n=0

n2Pn

)
∂t

= kb

[ ∞∑
n=0

(2n+ 1)Pn

]
+ kd

[
−

∞∑
n=0

(2n− 1)nPn

]
(A.54)

We can then rewrite this expression as

∂

( ∞∑
n=0

n2Pn

)
∂t

= 2kb

( ∞∑
n=0

nPn

)
+kb

( ∞∑
n=0

Pn

)
−2kd

( ∞∑
n=0

n2Pn

)
+kd

( ∞∑
n=0

nPn

)
.

(A.55)
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Recognizing that
∞∑
n=0

Pn = 1,
∞∑
n=0

nPn =<n>, and the second raw moment is

∞∑
n=0

n2Pn =<n2>, the above equation becomes

d <n2>

dt
= 2kb <n> +kb − 2kd <n2> +kd <n> . (A.56)

Finally, we rearrange the terms of the above result and substitute for <n(t)>
(equation A.47). The differential equation for < n2 > then is

d <n2>

dt
= kb + kb

kd

(
1 − e−kdt

)
(2kb + kd) − 2kd <n2> . (A.57)

This is a 1st order linear ODE and can be solved by using the integrating factor
method.4 Given the initial condition <n2(0)>= 0, the solution is

<n2(t)>=
[
kb
kd

(
1 − e−kdt

)]2
+ kb
kd

(
1 − e−kdt

)
. (A.58)

Reminding ourselves the solution to < n(t) > in equation A.47, our derived
expression for <n2(t)> can be equivalently written as

<n2(t)>=<n(t)>2 + <n(t)> . (A.59)

Finally, we substitute the above result into the definition of variance to obtain

σ2 = <n2(t)> − <n(t)>2

= <n(t)>2 + <n(t)> − <n(t)>2

= <n(t)> . (A.60)

The CME predicts that the variance has the same value as the average time
trajectory of the population size. The standard deviation then has the form

σ =
√
<n(t)> (A.61)

=
√
kb
kd

(1 − e−kdt). (A.62)

A comparison of the standard deviation obtained through the CME and an
ensemble of ABK simulations is shown in Figure 2.15.

Variance of a 0th order process. To obtain an expression for the variance
and standard deviation of a birth process, we begin with equation A.56. Setting
kd = 0 and replacing <n(t)> with the result of equation A.49, we get

d <n2(t)>
dt

= 2kb <n(t)> +kb (A.63)

= 2kb(kb t) + kb (A.64)
= 2k2

b t+ kb . (A.65)
4The interested reader can try solving the ODE with the integrating factor µ(t) = e2kdt.
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This differential equation, with initial condition < n2(0) >= 0, can be easily
solved to obtain

<n2(t)> = (kb t)2 + kbt

= <n(t)>2 + <n(t)> . (A.66)

Finally, subtracting <n(t)>2 from both sides yields the variance,

σ2 = <n2(t)> − <n(t)>2

= <n(t)>, (A.67)

and standard deviation,

σ =
√
<n(t)> (A.68)

=
√
kb t . (A.69)

Note that the variance and standard deviation appear to have the same depen-
dence on the average time trajectory of the population size as for a birth-death
process (equations A.60 and A.61). However, their final algebraic form is differ-
ent because <n(t)>= kb t for a 0th order process. A comparison of the standard
deviation obtained through the CME and an ensemble of ABK simulations is
shown in Figure 2.13.
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A.3 Homologous 2nd Order Process
We now move to the 2nd order process

2A k−→ X,

with k being the microscopic rate constant for this process. We begin by writing
the contributions to Pn(t+ dt).

Pn(t+ dt) = k
1
2(n+ 2)(n+ 1) dt Pn+2 +

[
1 − k

1
2n(n− 1) dt

]
Pn (A.70)

The factor 1
2 (n+ 2)(n+ 1) refers to the number of distinct pairs of A molecules,

assuming they are indistinguishable from each other (hence the 1/2 term). The
same reasoning applies to the term in the factor in brackets. Rearranging,
dividing by dt, and taking the limit at dt → 0, we obtain the CME,

∂Pn
∂t

= 1
2 k [(n+ 2)(n+ 1)Pn+2 − n(n− 1)Pn] . (A.71)

Solving the above equation to obtain the general solution, Pn(t), is beyond
the scope of our presentation in this Appendix (see McQuarrie, 1967, for more
details).

A.3.1 Relationship to Deterministic Prediction
We begin by multiplying both sides of the CME by n and summing over all n.

∂

( ∞∑
n=0

nPn

)
∂t

= 1
2 k
[ ∞∑
n=0

n(n+ 2)(n+ 1)Pn+2 −
∞∑
n=0

n2(n− 1)Pn

]
(A.72)

We use an alternate and faster method in finding the result of the expression
inside the brackets. We shift the index of the first term such that n 7→ n− 2.

∞∑
n=0

n(n+ 2)(n+ 1)Pn+2 7→
∞∑
n=2

(n− 2)n(n− 1)Pn (A.73)

The summation index now starts at 2, but we can change that back to 0 because
the terms in the new sum that correspond to n = 0 and n = 1 vanish anyway.
The reader can assert that the new form of the sum generates the same series.
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This means that we can rewrite equation A.72 as

∂

( ∞∑
n=0

nPn

)
∂t

= 1
2 k
[ ∞∑
n=0

n(n− 1)(n− 2)Pn −
∞∑
n=0

n2(n− 1)Pn

]

= 1
2 k
[ ∞∑
n=0

(
n(n− 1)(n− 2) − n2(n− 1)

)
Pn

]

= 1
2 k
[

−2
∞∑
n=0

n(n− 1)Pn

]
. (A.74)

Finally, since
∞∑
n=0

nPn =< n > and the second factorial moment is
∞∑
n=0

n(n −

1)Pn =<n(n− 1)>, we get
d <n>

dt
= −k <n(n− 1)>, (A.75)

which is reminiscent of equation 2.62. The CME leads to a differential rate law
that is related to the agent-based interpretation of the process. This highlights
the relationship between the deterministic and stochastic (CME) approaches:
the ODE formalism is an exact mean-field predictor of population trajectories
only in cases where the involved processes are linear (as we demonstrated for
1st and 0th order processes; see equations A.12 and A.46). The presence of any
nonlinearity results in a discrepancy between the two approaches.

Notice that equation A.74 can be rewritten by distributing n inside the
summation term, in which case d<n>/dt has an explicit dependence on <n2>.
That is,

d <n>

dt
= −k

[
<n2> − <n>

]
. (A.76)

This equation cannot be solved unless we obtain an expression for the 2nd order
raw moment by determining d<n2>/dt. Using the same methods as we previously
have, it can be shown that

d <n2>

dt
= −k

[
2 <n3> −4 <n2> +2 <n>

]
. (A.77)

Clearly, a dependence on a higher order raw moment appears inevitable. This
is a paradigmatic case for the problem of finding a closed-form solution to the
CME’s moments: lower order moments depend on higher order ones in non-
linear systems. Therefore, the set of ODEs for describing the distribution’s
raw moments becomes infinite. One way to resolve this issue is to assume that
higher order moments are a product of lower ones (McQuarrie, 1967, p. 441).
For instance, if we assume that <n2>=<n>2, then the derivative of the first
moment (equation A.76) becomes

d <n>

dt
= −k <n> [<n> −1] , (A.78)
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which is the same rate law as the deterministic agent-based interpretation of
the process (equation 2.62).

Furthermore, given the above assumption that <n2>=<n>2, it becomes
immediately clear that

σ2 =<n2> − <n>2= 0. (A.79)

This means that insisting on the condition < n2 >=< n >2 essentially turns
the probabilistic approach into a deterministic one, which obviates the primary
purpose of the probabilistic formalism to obtain a measure of the fluctuations
about the mean time trajectory. In any case, we will not discuss this issue any
further here, other than to point out that resolving these problems remains an
active area of research. For instance, Smadbeck and Kaznessis (2014; 2013)
have proposed a CME closure scheme for dealing with this situation.
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A.4 Heterologous 2nd Order Process
We consider the 2nd order heterologous process

A+B
k−→ X,

where B is limiting (i.e., the initial populations are related by NB,i < NA,i) and
k is the microscopic rate constant for this process. We define the parameter
Z = NA,i −NB,i = NA(t) −NB(t), and choose to represent the system state by
the limiting population size n = NB(t). The CME then is

∂Pn
∂t

= k [(n+ 1)(Z + n+ 1)Pn+1 − n(Z + n)Pn] , (A.80)

which can be (tediously) solved by the method of generating functions or Laplace
transforms. We merely present the result here.

Pn(t) = NA,i!NB,i!
(Z + n)!n!

NB,i∑
s=n

(−1)s−n (Z + 2s)(Z + n+ s− 1)!
(NB,i − s)!(s− n)!(NA,i + s)! e

−s(Z+s)kt

(A.81)
This is not one of the common probability distributions that one may encounter
in science. It is therefore best to numerically calculate <n> and σ2. We have
indeed done this using Matlab and plot the results in Figures 2.11 and 2.12.
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Appendix B

The Stochastic Simulation
Algorithm (SSA)

A nonspatial population-based method for describing the time evolution of
chemically reacting systems was developed by Gillespie (1977), and is applied to
model the behavior of a discrete number of molecules in a well-stirred container.
We hereby briefly explain how the algorithm works.

Consider discrete events (such as a chemical reaction) occurring at constant
rate ro over time T , so that the average number of events is roT . We begin by
assuming this to be a homogeneous Poisson process. The justification for this
is the following: if we divide T into s non-overlapping subintervals in each of
which an event occurrence can be considered a binary, or Bernoulli, process (an
event occurs or it does not), then the number of events in time T is binomially
distributed. It can be shown that for large s the Poisson distribution emerges
from the binomial distribution (the proof is short and can be found in any
textbook on probability theory). Therefore, the probability of n events occurring
within time T is

P (n) = (roT )n

n! e−roT . (B.1)

The time distribution between successive events can be analyzed by first sup-
posing that an event occurred at time t. Then, the probability P (τ) that the
next event takes place between t+ τ and t+ τ + ∆τ is

P (τ) = P (no event between t and t+τ)·P (1 event between t+τ and t+τ+∆τ)
(B.2)

P (τ) = e−roτ
(
ro ∆τ e−r∆τ) , (B.3)

where we used equation B.1 to write each of the two terms in the expression for
P (τ). For a sufficiently small time interval ∆τ ,

lim
∆τ→0

e−ro ∆τ = 1 , (B.4)
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and equation B.3 simplifies to

P (τ) = e−roτro dτ , (B.5)

where ∆τ has been replaced by the infinitesimal time interval dt. So, the waiting
time between successive events (sometimes referred to as the interoccurrence
time) is exponentially distributed with density function ρ(τ),

ρ(τ) = ro e
−roτ , (B.6)

and average value < τ >= 1/ro and variance σ2 =< τ2 > − < τ >2= 1/r2
o. It

also follows that the cumulative distribution function (CDF) is P(τ) = 1−e−roτ .
Note that this result has the same algebraic form as the Pber form of transition
probabilities we used in our agent-based simulations. However, ro is not the
same as the KCF (symbol: Ω, see section 2.6). The CDF we mention here applies
to the cumulative probability of a transition event for the entire population. In
contrast, Pber pertains to each agent in a population.

An interesting case to consider is when τ = 0, and the exponential term
in equation B.6 has its maximum value of 1. Then, the probability density
becomes

ρmax(τ) = ro ⇒ ρmax(τ)
ro

= 1 . (B.7)

That is, the maximum value of ρ(τ) is ro, and therefore ρ(τ) is always a fraction
of ro.

Alternative proof for P (τ). We offer an additional way to obtain the above
result that τ is exponentially distributed, without initially assuming that we are
dealing with a Poisson process.

We again begin by writing an expression for P (τ) (equation B.2). We can
rewrite the first term on the right-hand side of B.2 as

P (no event between t and t+ τ) = P (no event between t and t+ τ − ∆τ)
· P (no event between t+τ -∆τ and t+ τ) .

(B.8)

Essentially, we have split up the time interval in which no event can occur
into two time intervals: the first is of length τ − ∆τ and the second ∆τ . For
notational convenience, we define Q(τ) = P (no event between t and t+τ). The
above relationship can then be rewritten as

Q(τ) = Q(τ − ∆τ)Q(∆τ) . (B.9)

The figure below clarifies the time intervals we are considering and their respec-
tive probabilities. We have colored the intervals red if no reaction takes place,
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and green if one event occurs within it.

Notice that we used the notation P (∆τ) = P (1 event between t+ τ and t+ τ +
∆τ).

Taking the natural logarithm of both sides and rearranging, we get

lnQ(τ) − lnQ(τ − ∆τ) = lnQ(∆τ) . (B.10)

We recognize that Q(∆τ) = 1−ro ∆τ , and the series expansion of the right-hand
side of the above equation then is

ln (1 − ro ∆τ) = −

[
ro ∆τ + (ro ∆τ)2

2 + (ro ∆τ)3

3 + . . .

]
= − [ro ∆τ + o(∆τ)] , (B.11)

where o(∆τ) refers to terms that go to 0 faster than ∆τ . We then substitute
this result into B.10, divide both sides by ∆τ and take the limit as ∆τ → 0.
We have,

lim
∆τ→0

lnQ(τ) − lnQ(τ − ∆τ)
∆τ = −ro , (B.12)

where the error term has vanished as ∆τ → 0. The left-hand side is the deriva-
tive of lnQ(τ). Thus,

d [lnQ(τ)]
dτ

= −ro , (B.13)

whose solution, given the initial condition Q(0) = 1 (this follows from the
definition of Q), is

Q(τ) = e−roτ . (B.14)

We can then substitute this result into expression B.2, along with P (dτ) = ro dτ ,
and continue as shown previously to get the exponential distribution of τ .

B.1 Algorithm Implementation
In general, if there are several chemical species participating in a total number
of m reactions,1 then let ro represent the sum of the microscopic rates,2 of all

1The reactions are assumed to be Markovian processes.
2More accurately referred to as propensity functions in this context, which generally have

the same algebraic form as the microscopic reaction rate law (discussed in section 2.1). The
reader can refer to Gillespie (2007) for a more thorough review of the method.
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reactions that can occur in the system,

ro =
m∑
i=1

ri , (B.15)

where ri depend on the microscopic rate constants ki and the number of molecules
participating in a reaction.3

The numerical implementation of the algorithm requires a computing system
to generate two (pseudo-)random numbers, κ1 and κ2, drawn from the standard
uniform distribution in the interval (0, 1], which are used to determine:

1. When the next reaction will take place: as shown above, 0 < ρ(τ)
ro

≤ 1,
and letting κ1 = ρ(τ)

ro
, we get

κ1 = e−roτ , (B.16)

where we used equation B.6. Solving for τ , the time interval until the next
reaction event occurs, we get

τ = − ln(κ1)
ro

. (B.17)

2. Which reaction will take place next (after time interval τ): we normalize
the individual reaction rates against the overall rate ro

Ri = ri
ro
. (B.18)

The interval (0, 1] is therefore composed of non-overlapping, contiguous
subintervals of length Ri such that

∑
Ri = 1.

0 1

R3 R4 ... Rm-1 RmR2R1

The reaction that occurs is selected by determining in which interval ran-
dom number κ2 falls in. For instance, if 0 < κ2 < R1 then the first in
the list of possible reactions occurs. If R1 ≤ κ2 < R1 + R2, the second
reaction occurs, etc.

3. Finally, the molecule numbers are adjusted based on which reaction was
selected, and the next iteration of the algorithm takes place after the time
variable has been advanced by τ sec.

It is evident from the above description that the algorithm does not consider
the probability of reaction for each molecule, but instead determines in each

3For instance, for the 1st order process A → X, r = kNA, where NA is the number of A
molecules in the population.
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iteration the time at which a single reaction event will occur in the entire popu-
lation. The population is thereby treated as homogeneous in makeup (the rate
constant parameterizes the probability of reaction for each species’ entire popu-
lation), and only productive reaction events are considered4 (i.e., the ones result-
ing in the formation of products). The rationale behind ignoring unproductive
or nonreactive collisions has to do with the assumption that the population is
homogeneous with respect to its spatial distribution. The reader has surely
noted that none of the above arguments were made with spatial constraints in
mind, and the molecules are assumed to be well-mixed or uniformly distributed
within the reaction vessel’s volume (or, more generally, the population density
is constant throughout the space where agents reside).

B.2 Relation to CME
We set up the CME for a process that has n molecules of a species at a particular
time t, and solve it for the case where the population remains at n at time t+ τ
(i.e., there are no reaction events in this time interval). We remind the reader
that the general from of the CME is (Appendix A),

∂Pn(t)
∂t

=
∑
n′

T (n|n′)Pn′(t) −
∑
n′′

T (n′′|n)Pn(t) .

Since we are assuming that the population size at the beginning of our time
interval was n and not of some other size, the first term on the right-hand side
of the above expression is zero (since T (n|n′) = 0). Also, we adjust the notation
to make it consistent with the above presentation of the SSA: the sum of all
transition probabilities from state n is∑

n′′

T (n′′|n) = ro . (B.19)

The CME then becomes
∂Pn(t)
∂t

= −ro Pn(t) . (B.20)

Upon separating variables and integrating with respect to the dummy time
variable x, we get ∫ t+τ

t

dPn(x)
Pn(x) dx = −ro

∫ t+τ

t

dx , (B.21)

whose solution, given that Pn(t) = 1 (since the initial population size was set),
is

Pn(t+ τ) = e−roτ . (B.22)
4The method is sometimes referred to in the literature as “rejection-free,” indicative of

the fact that no potential reaction events are rejected as part of the algorithm. Notice that
the ABK algorithm assesses the probability of all possible reaction events, many of which are
rejected depending on the kinetic parameters in the modeled system.
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This is the probability that the system remains at state n at time t + τ , in
agreement with B.14. Moreover, the probability of a transition event occurring
in [τ, τ +dτ) is ro dτ .5 Therefore, the probability, P (τ), that the next transition
event takes place between t+ τ and t+ τ + dτ is

P (τ) = e−roτro dτ , (B.23)

which is the same result as in equation B.5 (which we obtained in two different
ways in the first section of this appendix). We see that the CME predicts that τ
is exponentially distributed, as we had previously concluded. As such, the SSA
and CME approaches can be considered to be equivalent. Put another way,
the SSA samples the probability distribution that is the solution to the CME,
thusly producing an exact “realization” or trajectory of the population sizes.6
Similarly to the ABK method, an ensemble of such trajectories can be used to
assess the expected fluctuations around the mean trajectory (i.e., the variance
or standard deviation).

5We are assuming that ro is the same at times t and t + τ , since the system’s state had
not changed in that interval: ro(t) = ro(t+ τ).

6Formally referred to as a Markov jump process, since the population sizes can only jump
from one integer value to another.
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Appendix C

A Primer on Stability
Analysis

We briefly present how to assess the stability of fixed points in 1- and 2-
dimensional dynamical systems expressed as ODEs.1 It is beyond the scope
of this appendix to offer a detailed analysis of nonlinear dynamics (we refer the
reader to Strogatz, 2015, or Kaplan and Glass, 1995, for lengthier treatments).

C.1 1-Dimensional Linear Systems
We begin with the general form for the ODE of an autonomous 1-dimensional
system,

dx

dt
= f(x) , (C.1)

and will initially focus on the case where the function f(x) is linear,

dx

dt
= λx , (C.2)

with λ being a real constant. We can generally determine the fixed points of a
system by finding the values of x for which dx

dt = 0. Clearly, the only fixed point
is x∗ = 0. Moreover, it is easy to see that

d2x

dt2
= d

dt

(
dx

dt

)
= d

dt
(λx) = λ

dx

dt
= λ2x . (C.3)

Similarly, the nth derivative of x then is

dnx

dtn
= λnx . (C.4)

1As one may anticipate, these arguments can be extended to higher dimensional systems.
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We can try to find the solution of the ODE by considering the Taylor expansion
of x(t) around t = 0.

x(t) = x(0) + dx

dt

∣∣∣∣
t=0

t+ d2x

dt2

∣∣∣∣
t=0

t2

2! + · · · + dnx

dtn

∣∣∣∣
t=0

tn

n! (C.5)

Upon substituting the expressions for the nth derivative of x we already deter-
mined, we get

x(t) = x(0) + λx(0) t+ λ2x(0) t
2

2! + · · · + λnx(0) t
n

n! (C.6)

= x(0)
[

1 + λt+ (λt)2

2! + · · · + (λt)n

n!

]
(C.7)

= x(0) eλt . (C.8)

It is then clear that as long as x(0) ̸= 0, x(t) follows exponential growth or
decay depending on if λ > 0 or λ < 0, respectively. The trivial case where λ = 0
means that x(t) = x(0) for all values of t.

In summary, therefore, the stability of the fixed point x∗ = 0 can be catego-
rized according to the value of the parameter λ:

1. x∗ = 0 is stable when λ < 0, and x(t) → 0 as t → ∞,

2. x∗ = 0 is unstable when λ > 0, and x(t) → ∞ as t → ∞,

3. x∗ = 0 is metastable when λ = 0, and x(t) = x(0).

The term metastable in the above last case conveys the idea that any change in
the value of λ will change the system’s dynamics such that it follows one of the
first two cases depending on the sign of λ.

If the original ODE had the more general form

dx

dt
= λx+ b , (C.9)

then the analysis would be the same, except the fixed point has now shifted to
x∗ = − b

λ , or equivalently, b = −λx∗. It can be more straightforward to rewrite
the ODE by changing variables so that we can keep track of the magnitude of
a perturbation from the fixed point. We can define

χ(t) = x(t) − x∗. (C.10)

Clearly, since x∗ is a constant,

dχ

dt
= dx

dt
(C.11)

= λx+ b

= λ (χ+ x∗) − λx∗

= λχ . (C.12)
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Thus, the ODE for the variable χ has the same form as equation C.2, whose
closed-form solution we have already determined (equation C.8). Solving in
terms of our original variable x(t), we get

χ(t) = χ(0) eλt (C.13)
x(t) − x∗ =

(
x(0) − x∗)eλt

x(t) = x(0) eλt + x∗ (1 − eλt
)
. (C.14)

C.2 1-Dimensional Nonlinear Systems
We will now extend this discussion to ODEs of the form C.1, but with f(x)
being a nonlinear function. We first identify all of the fixed points and then
linearize the function at each of them. Notice that this is a local approach: we
aim to understand the stability of each fixed point by analyzing the system’s
behavior in its immediate vicinity. We accomplish this by considering a small
perturbation χ(t) = x(t) − x∗, and, as we have shown,

dχ

dt
= dx

dt
= f(x) = f(χ+ x∗) . (C.15)

Taylor expanding the right-hand side of the above equation around χ = 0 (which
implies that x = x∗) yields

dχ

dt
= f(x∗) + df(x)

dx

∣∣∣∣
x=x∗

χ+O
(
χ2) , (C.16)

whereO(χ2) represents quadratic and higher order terms in χ. Upon recognizing
that f(x∗) = 0 since x∗ is a fixed point, and simplifying the notation by rewriting
df(x)
dx

∣∣∣
x=x∗

= f ′(x∗), the above equation becomes

dχ

dt
= f ′(x∗)χ+O

(
χ2) . (C.17)

We can rewrite this without the error term as

dχ

dt
≈ f ′(x∗)χ , (C.18)

which is a 1-dimensional linear ODE with respect to χ. Therefore, f ′(x∗) plays
the role of λ in our earlier discussion, and its sign will determine if the perturba-
tion χ grows or decays (exponentially) as t → ∞. Consequently, the stability at
x∗ can be determined. We note that this analysis does not hold when f ′(x∗) = 0,
in which case the O

(
χ2) term cannot be ignored and a careful analysis of the

nonlinear terms is needed.
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Graphical analysis
It is sometimes convenient to analyze the behavior of the system graphically.
One typically plots the derivative dx

dt = f(x) as a function of x, and the x-
intercepts correspond to fixed points whose stability is revealed by the slope of
f(x) as it crosses the x-axis. In accordance with our results upon linearization
at x∗, if f ′(x∗) < 0 then x∗ is stable.

Another graphical method that is sometimes employed is the rate-balance
plot when f(x) is a polynomial with additive and subtractive terms representing
a gain and loss in x, respectively. Then, the intersections between the graphs of
the aggregate additive and subtractive terms denote the fixed points. Examples
where we have used this method can be found in Figures 3.4a, 3.10a, 3.28,
and 3.36a.

C.3 2-Dimensional Linear Systems
We now consider the general form for the ODEs of an autonomous 2-dimensional
system

dx

dt
= f(x, y) (C.19)

dy

dt
= g(x, y) . (C.20)

We will begin by presenting the case where the functions f(x, y) and g(x, y) are
linear, and will subsequently generalize by considering nonlinearity.

A linear system can then be written as

dx

dt
= ax+ by (C.21)

dy

dt
= cx+ dy , (C.22)

where the coefficients a, b, c, d are real constants. It is convenient to rewrite
this system of ODEs in matrix form,

dX
dt

= MX , (C.23)

where bold-faced notation was used to indicate the column vector X =
[
x
y

]
and

M is the square matrix of the coefficients, M =
[
a b
c d

]
. Notice that X = 0 is

always a fixed point of this linear system. The solution X(t) can be visualized
parametrically by plotting it on the xy-plane, also known as the phase plane in
dynamical systems analysis.

We can guess that the solution to this system of ODEs has the form X(t) =
Veλt, with the parameter λ and the column vector V to be determined. Upon
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plugging this putative solution into equation C.23, we obtain

d

dt

(
Veλt

)
= MVeλt (C.24)

λVeλt = MVeλt . (C.25)

Cancellation of the exponential terms leads to

MV = λV , (C.26)

revealing that finding the solutions to the original system of ODEs is equivalent
to an eigenvalue problem. The values of λ that we will solve for are the eigen-
values of their respective eigenvectors V. Note that given the matrix notation
we introduced, the above comments apply to systems of higher dimensionality
as well.

We can find λ by solving the characteristic equation

det (M − λI) = 0 , (C.27)

where det() stands for the determinant of a square matrix, and I is the identity
matrix. Obviously, the order of the characteristic polynomial is the system’s
dimension. In the case of a 2-dimensional system, the characteristic polynomial
is

(a− λ)(d− λ) − bc = 0 (C.28)
ad− (a+ d)λ+ λ2 − bc = 0

λ2 − (a+ d)λ+ (ad− bc) = 0 . (C.29)

It is common to define the trace of M and its determinant as

trace(M) = τ = a+ d (C.30)
det(M) = ∆ = ad− bc . (C.31)

Therefore, equation C.29 can be rewritten as

λ2 − τλ+ ∆ = 0 , (C.32)

whose solutions are
λ1,2 = 1

2

(
τ ±

√
τ2 − 4∆

)
. (C.33)

Notice that the eigenvalues depend only on τ and ∆. It also follows that

τ = λ1 + λ2 (C.34)
∆ = λ1λ2 . (C.35)

In the likely case that λ1 ̸= λ2, their respective eigenvectors V1 and V2 are
linearly independent, and the general solution for X(t) is the linear combination

X(t) = C1e
λ1tV1 + C2e

λ2tV2 ,
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where the constants C1 and C2 can be determined by applying the initial con-
dition X(0) = X0.

The stability of the fixed point X∗ =
[
0
0

]
is determined by the eigenvalues

(or, equivalently, by τ and ∆). For real eigenvalues, if λ1 < 0 and λ2 < 0,
then x∗ is stable; on the other hand, if λ1 > 0 and λ2 > 0, then it is unstable.
A saddle point occurs when the eigenvalues are of opposite sign (we show an
example of a saddle in Figure 3.13b). In the case where the eigenvalues are
complex, λ1,2 = α±βi, then the exponential part of the solution can be written
using Euler’s formula,

eλ1,2t = e(α±βi)t = eαte±iβt = eαt (cosβt± i sin βt) .

Therefore, the solution X(t) is periodic if α = 0, or spirals into (α < 0; stable
spiral) or away (α > 0; unstable spiral) from the fixed point (an example of a
stable spiral in shown in Figure 3.38d).

An easy graphical way of classifying a fixed point’s stability is by plotting
∆ vs τ . We will not reproduce this stability diagram here because the plot can
be found in the textbooks mentioned in the beginning of this appendix (for an
online version, see https://en.wikipedia.org/wiki/Stability_theory).

C.4 2-Dimensional Nonlinear Systems
Armed with our treatment of linear systems, we can now extend our discussion
to nonlinear ones. We will employ the same method as in the 1-dimensional
case: linearization at each of the fixed points. These points can be found by
setting the ODEs equal to zero,

dx

dt
= f(x, y) = 0 (C.36)

dy

dt
= g(x, y) = 0 , (C.37)

and solving for any values of x and y that satisfy these conditions. A graphical
analysis on the phase plane is often useful. We can solve for one variable with
respect to the other using both of the above resulting algebraic expressions,
and obtain the x and y nullclines (for instance, see Figure 3.13b). The inter-
sections between these two curves represent fixed points whose stability can be
determined using the method we describe below.

Given a fixed point (x∗, y∗), we define the magnitude of a perturbation from
each of these coordinates by

χ(t) = x(t) − x∗ (C.38)
ψ(t) = y(t) − y∗. (C.39)
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It follows that

dχ

dt
= dx

dt
(C.40)

dψ

dt
= dy

dt
, (C.41)

since x∗ and y∗ are constants. We then do a Taylor expansion for both functions
f(x, y), g(x, y) at χ = 0 and ψ = 0, respectively.

dχ

dt
= ∂f(x, y)

∂x

∣∣∣∣
(x∗,y∗)

χ+ ∂f(x, y)
∂y

∣∣∣∣
(x∗,y∗)

ψ +O
(
χ2, ψ2, χψ

)
(C.42)

dψ

dt
= ∂g(x, y)

∂x

∣∣∣∣
(x∗,y∗)

χ+ ∂g(x, y)
∂y

∣∣∣∣
(x∗,y∗)

ψ +O
(
χ2, ψ2, χψ

)
(C.43)

Notice that each of the partial derivatives are evaluated at (x∗, y∗) and that we
have omitted the 0th-order term in χ and ψ since f(x∗, y∗) = g(x∗, y∗) = 0.
Thus, the dynamics of χ and ψ are described by[

dχ/dt
dψ/dt

]
=
[
∂f(x,y)
∂x

∂f(x,y)
∂y

∂g(x,y)
∂x

∂g(x,y)
∂y

]
(x∗, y∗)

[
χ
ψ

]
+O

(
χ2, ψ2, χψ

)
. (C.44)

The square matrix of the partial derivatives is the Jacobian matrix evaluated at
the fixed point (x∗, y∗).2 Omitting the error term O

(
χ2, ψ2, χψ

)
that includes

quadratic and higher order terms, the linearized system of the perturbation
ODEs becomes [

dχ/dt
dψ/dt

]
≈

[
∂f(x,y)
∂x

∂f(x,y)
∂y

∂g(x,y)
∂x

∂g(x,y)
∂y

]
(x∗, y∗)

[
χ
ψ

]
, (C.45)

which can be treated as a linear system of ODEs with the Jacobian matrix
playing the role of M (see section C.3). Finally, the computed eigenvalues are
used to classify the fixed point.

2The generality of this approach can be appreciated by connecting this discussion to 1-
dimensional systems: the Jacobian of f(x) is simply df/dx = f ′(x).
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Appendix D

Selected Matlab Code

Listing D.1 – 1st order process for a homogeneous population.
1 % A --> B , Simulating 1st order kinetics .
2 % Considering individuals / agents of species A. Reporting time course
3 % and time distribution of reaction / transition events ( extinction ).
4
5 clear ; clc;
6 rng (0);
7
8 % *** Simulation Parameters ***
9 dt = 0.01; % Assume constant time step increment (sec)

10 totalTime = 10; % Simulation time (sec)
11 t_steps = totalTime / dt;
12 time = 0: dt:totalTime -dt;
13
14 agents = 10; % Initial number of A agents
15
16 lambda = 0.8; % Half -life in sec
17 k = log (2)/ lambda ; % Rate constant in 1/ sec
18
19 reps = 100; % Number of times to repeat simulation
20
21 % Preallocate memory .
22 S = zeros (reps , t_steps ); % To monitor population size
23 extt = zeros (reps , agents ); % To monitor extinction time of A agents
24
25 % *** Transition probability ***
26 % Choose one of the following two options :
27 P = 1 - exp(-k*dt); % P_ber or P_int
28 % P = k*dt; % P_dif
29 % Note that this probability is constant for fixed dt ,
30 % so it can be calculated just once ( outside of 'for ' loops below ).
31
32 %% ABK Simulation
33
34 for n = 1: reps
35
36 % Binary - valued (0/1) array for monitoring state of A agents ; set to initial condition .
37 A = ones (1, agents ); % 0 = dead , 1 = alive
38
39 S(n ,1) = sum(A); % Initial population size
40
41 for t = 2: t_steps
42
43 tempA = find(A==1); % Find alive A agents . This is done to
44 % speed up execution of 'for ' loop below .
45
46 for i = 1: size(tempA ,2)
47
48 if rand < P % * check probability condition *
49 A( tempA (i)) = 0; % A agent dies
50 extt(n, tempA (i)) = time(t); % Record time of this agent 's extinction /death
51 end
52
53 end % end 'for i' loop
54
55 S(n,t) = sum(A);
56
57 end % end 'for t' loop
58
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59 end % end 'for n' loop
60
61 %% Post - Processing
62 % Calculate the average and standard deviation of time trajectories .
63 avg = mean(S); sdev = std(S);
64
65 % Remove zeros from extt ( zeros represent agents that didn 't die within totalTime ).
66 for z=1: agents
67 extt_zeros = find(extt (:,z)==0);
68 for a = 1: size( extt_zeros ,1)
69 extt( extt_zeros (a),z) = NaN;
70 end
71 end
72 extt = reshape (extt ,[] ,1); % Reshape into column vector
73
74 % Calculate deterministic time trajectory .
75 y_theory = agents * exp(-k .* time);
76
77 %% Plot Time Trajectories
78 fig0 = figure ; hold on;
79 set(fig0 ,'Position ' ,[1 1 500 450]) ;
80 fig0. PaperUnits = 'inches ';
81 fig0. PaperPosition = [0 0 6 5]; % Control the size of printed (eps) fig.
82
83 trial = 19; % For plotting a sample stochastic trajectory
84 % Choose a value (0 < trial <= reps)
85 p1 = plot(time ,avg ,'b');
86 p2 = plot(time ,avg+sdev ,'k','LineStyle ','--','Color ' ,[0.8 0.8 0.8]) ;
87 p3 = plot(time ,avg -sdev ,'k','LineStyle ','--','Color ' ,[0.8 0.8 0.8]) ;
88 p4 = plot(time ,y_theory ,':g');
89 p5 = plot(time ,S(trial ,:) ,'c'); % Plot a sample stochastic trajectory
90
91 title ([ 'N_{A,i} = ' num2str ( agents )],'FontName ','Times New Roman ','FontSize ' ,12);
92 axis ([0 totalTime 0 agents ]);
93 set(gca ,'XMinorTick ','on ','Box ','off ');
94 xlabel ('t (sec)');
95 ylabel ('N_A ');
96
97 leg0 = legend ([ p1 p4],'ABK <N_A(t)>','N_A(t) = 10 e^{-kt}');
98 set(leg0 ,'FontName ','Times New Roman ','FontSize ' ,9,...
99 'EdgeColor ' ,[0.95 0.95 0.95] , 'Location ','NorthEast ');

100
101 % hgsave ([' o1_TCdev_A =' num2str ( agents ) '.fig ']);
102
103 %% Plot Extinction Time Distribution
104 bins = 20; % Number of bins for histogram
105
106 fig1 = figure ; hold on;
107
108 [num1 , c1] = hist(extt ,bins); % Obtain histogram data
109 Num1 = num1 / (reps* agents ); % Normalize
110
111 b = bar(c1 ',Num1 ');
112 set(b(1) ,'FaceColor ','flat ','EdgeColor ' ,[0.70 0.78 1]);
113
114 % Calculate PDF of exponential ditribution .
115 exp_PDF1 = 1 / (bins/ totalTime ) * k * exp(- k .* time);
116 % PDF needs to be adjusted for the number of bins in the histogram .
117 % Adjustment : divide by (bins/ totalTime )
118
119 plot(time ,exp_PDF1 ,'-','Color ','g','LineWidth ' ,2);
120
121 set(gca ,'XMinorTick ','on ','YMinorTick ','on ','Box ','off ');
122 xlabel ('t (sec) '); ylabel ('Fraction of A\ rightarrowX Transitions ');
123
124 % Sample exponential PDF at the same time values as were used in histogram .
125 exp_PDF1d = 1 / (bins/ totalTime ) * k * exp(- k * c1);
126
127 % Coefficient of Determination R^2 for histogram fit to PDF.
128 disp ([ 'R^2 = ' num2str ( CoefDet (Num1 , exp_PDF1d ))]);
129 % See CoefDet function definition below .
130
131 %% Clean Up Unnecessary Variables ; Save Data .
132 clear i t p* fig* leg* A tempA ;
133 save ([ 'o1_A=' num2str ( agents ) '.mat ']);

1 function Rsq = CoefDet (data , theor )
2 % Find Coefficient of Determination , R^2. This applies to any curve fit , linear or nonlinear .
3 % Data and theoretical curve vectors should be of the same length .
4
5 SST = sum (( data - mean(data)).^2); % Total sum of squares for simulation data
6 SSR = sum (( data - theor ).^2); % Sum of square residuals
7 Rsq = 1 - SSR ./ SST; % Definition of R^2
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Listing D.2 – 2nd order process 2A → X for a homogeneous population.
1 % A + A --> X
2 % Simulating 2nd order kinetics using Agent - Based Kinetics .
3 % Assuming a homogeneous population of A.
4 clear ;
5 rng (0);
6
7 global k dif_canon ;
8
9 agents = 10;

10
11 k = 0.01; % units : 1/ sec
12
13 t_max = 100; % units : sec
14 dt = 1/100; % Fixed time step increment
15 steps = t_max / dt;
16 time = zeros (1, steps );
17
18 reps = 500; % Times to repeat simulation
19
20 % Preallocate memory :
21 Sa = zeros (reps , steps ); Sc = zeros (reps , steps );
22 P = zeros (reps , steps );
23
24 %% ABK algorithm
25 for n=1: reps
26
27 % Initial number of reactant molecules ; assume B is limiting .
28 Ao = agents ; Cmax = Ao;
29 % Arrays for tracking reactant and product agent status
30 A = ones (1,Ao); C = zeros (1, Cmax);
31 % Initialize time - dependent sum of molecule numbers
32 At = zeros (1, steps ); Ct = zeros (1, steps );
33 At (1) = sum(A); Ct (1) = sum(C);
34
35 time (1) = 0;
36
37 for t=2: steps
38
39 % dt = 1/( k*At(t -1) *( At(t -1) -1) ); % Variable time step increment
40 % dt = exprnd (1/( k*At(t -1) *( At(t -1) -1) ) ); % Exponentially - distributed time step increment
41
42 % *** Evaluate transition probability ( choose one of the following forms ):
43 % P(n,t) = 1 - 1 / (1 + k * (At(t -1) -1) * dt); % P_can
44 P(n,t) = 1 - 1 /( At(t -1) *(1 - exp(-k*dt)) + exp(-k*dt) ); % P_int
45 % P(n,t) = 1 - exp(-k * (At(t -1) -1) * dt); % P_ber
46 % P(n,t) = k * (At(t -1) -1) * dt; % PP_dif
47
48 tempAa = find(A==1); % Find alive A agents
49
50 for i = 1: size(tempAa ,2)
51
52 if tempAa (i) ~= 0 && rand < P(n,t)
53
54 A( tempAa (i)) = 0; % First A agent dies
55
56 x = ceil(rand*size(tempAa ,2));
57 while tempAa (x) == 0
58 x = ceil(rand*size(tempAa ,2));
59 end
60
61 A( tempAa (x)) = 0; % Second A agent dies ( chosen randomly )
62
63 tempAa (i) = 0; % Make sure the two A agents that reacted
64 tempAa (x) = 0; % are not reselected in this time step.
65
66 C(i) = 1; % C agent is born
67 end
68 end % end 'for i' loop
69
70 At(t) = sum(A); Ct(t) = sum(C);
71 time(t) = time(t -1) + dt;
72
73 end % end 'for t' loop
74
75 Sa(n ,:) = At; Sc(n ,:) = Ct;
76
77 end % end 'for n' loop
78
79 % Calculate mean and standard deviation of ABK trajectories :
80 avg = mean(Sa); sdev = std(Sa);
81
82 %% Solve ODE for 2nd order kinetics
83 dif_canon = 0; % use agent - based form of DE
84 [t_sol0 , y_sol0 ] = ode45 (@ o2_homo_dif ,0: t_max /200: t_max ,[ At (1) ; Ct (1) ]);
85 dif_canon = 1; % use canonical form of DE
86 [t_sol1 , y_sol1 ] = ode45 (@ o2_homo_dif ,0: t_max /200: t_max ,[ At (1) ; Ct (1) ]);
87
88 %% Plot
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89 figure1 = figure ('Name ','2nd Order Rx Time course ','NumberTitle ','off ');
90 set(figure1 ,'Position ' ,[1 1 500 450]) ; hold on;
91
92 p1 = plot(time ,avg ,'b','MarkerSize ' ,3,'DisplayName ','ABK ');
93 p1_dev1 = plot(time ,avg+sdev ,'LineStyle ','--','Color ' ,[0.8 0.8 0.8]) ;
94 p1_dev0 = plot(time ,avg -sdev ,'LineStyle ','--','Color ' ,[0.8 0.8 0.8]) ;
95
96 % Plot DE solutions for species A
97 p2 = plot(t_sol0 , y_sol0 (: ,1) ,':g','DisplayName ','DE_{ab}');
98 p3 = plot(t_sol1 , y_sol1 (: ,1) ,':r','DisplayName ','DE_{can}');
99

100 xlabel ('t (sec)'); ylabel ('N_A(t)');
101 axis ([0 t_max 0 agents ]); hold off;
102 title ([ 'N_{A,i} = ' num2str ( agents )],'FontName ','Times New Roman ','FontSize ' ,12)
103 set(gca ,'XMinorTick ','on ','YMinorTick ','on ','Box ','off ');
104 leg = legend ([ p1 p2 p3 ]);
105 set(leg ,'Position ' ,[0.673 0.374 0.182 0.123] , 'FontName ','Times New Roman '...
106 ,'EdgeColor ' ,[0.95 0.95 0.95]) ;
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Listing D.3 – 2nd order process A+B → X for a homogeneous population.
1 % A + B --> C , Simulating 2nd order kinetics .
2 % Considering individuals / agents of all species , calculating
3 % transition probabilities with respect to the agents of species B.
4 % Reporting time course ( average trajectory and standard deviation ).
5
6 clear ; clc;
7 rng (0);
8
9 maxTime = 30;

10 dt = 1/100; % Fixed time step increment
11 t_steps = ceil( maxTime / dt);
12
13 agents = 10;
14
15 global k; % Bimolecular microscopic kinetic constant
16 k = 0.01; % units : 1/ sec
17
18 reps = 500; % Repeat experiment this # of times
19
20 % Preallocate memory ; Initialize time - dependent population sizes
21 time = zeros (1, t_steps );
22 At = zeros (reps , t_steps ); Bt = zeros (reps , t_steps ); Ct = zeros (reps , t_steps );
23
24 for n=1: reps
25
26 % Initial number of reactant molecules ; assume B is limiting .
27 Ao = agents ; Bo = ceil (0.7* agents ); Cmax = Bo;
28 % Arrays for tracking reactant and product agent state : % 0 = dead , 1 = alive.
29 A = ones (1,Ao); B = ones (1,Bo); C = zeros (1, Cmax);
30 At(n ,1) = sum(A); Bt(n ,1) = sum(B); Ct(n ,1) = sum(C);
31
32 for t=2: t_steps
33
34 temp1 = find(B==1); % Find alive B agents
35
36 P = 1 - exp(-k * At(n,t -1) * dt); % *** Transition probability P_ber ***
37
38 for i = 1: size(temp1 ,2)
39
40 if rand < P % * check probability condition *
41
42 B( temp1 (i)) = 0; % B agent dies
43 temp2 = find(A==1); % Find alive A agents
44 x = ceil(rand*size(temp2 ,2)); % Randomly pick alive A agent
45 A( temp2 (x)) = 0; % Picked A agent dies
46 C( temp1 (i)) = 1; % C agent becomes alive
47
48 end
49
50 end
51
52 time(t) = time(t -1) + dt;
53 At(n,t) = sum(A); Bt(n,t) = sum(B); Ct(n,t) = sum(C);
54
55 end % end for t loop
56
57 end % end for reps loop
58
59 % Population statistics of time trajectories
60 avgA = mean(At); avgB = mean(Bt); avgC = mean(Ct);
61 sdevA = std(At); sdevB = std(Bt); sdevC = std(Ct);
62
63 % Solve ODE for 2nd order kinetics
64 tmax = time(t -1);
65 [t_sol , y_sol ] = ode45 (@ o2_dif ,0: tmax /100: tmax ,[ At (1) ; Bt (1) ; Ct (1) ]);
66
67 % Plot average time course and standard deviation .
68 figure ('Name ','2nd Order Rx Time course ','NumberTitle ','off '); hold on;
69 plot(time ,avgA ,time ,avgB ,time ,avgC);
70 p1_devA1 = plot(time ,avgA+sdevA ,'LineStyle ','--','Color ' ,[0.8 0.8 0.8]) ;
71 p1_devA0 = plot(time ,avgA -sdevA ,'LineStyle ','--','Color ' ,[0.8 0.8 0.8]) ;
72 p1_devB1 = plot(time ,avgB+sdevB ,'LineStyle ','--','Color ' ,[0.8 0.8 0.8]) ;
73 p1_devB0 = plot(time ,avgB -sdevB ,'LineStyle ','--','Color ' ,[0.8 0.8 0.8]) ;
74 p1_devC1 = plot(time ,avgC+sdevC ,'LineStyle ','--','Color ' ,[0.8 0.8 0.8]) ;
75 p1_devC0 = plot(time ,avgC -sdevC ,'LineStyle ','--','Color ' ,[0.8 0.8 0.8]) ;
76
77 xlabel ('t (sec)');
78 axis ([0 maxTime 0 agents ]);
79
80 % Plot DE Time Courses
81 plot(t_sol , y_sol (: ,1) ,':b'); plot(t_sol , y_sol (: ,2) ,':g');
82 plot(t_sol , y_sol (: ,3) ,':r');
83
84 legend ('ABK <N_A(t)>','ABK N_B(t)','ABK N_C(t)');
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Listing D.4 – Irreversible mutual inhibition switch motif.
1 % k_da k_db
2 % <-- A _ _ B --> % For Report : B |-> R
3 % ^ \/ ^
4 % k_a | /\ | k_b
5 % | / ~\ |
6 % |~ | ~|
7 % |
8 % S
9 % A and B are synthesized (0 th order constants k_a , k_b respectively )

10 % A and B are degraded (k_da , k_db)
11 % A and B inhibit each other 's synthesis ( MUTUAL inhibition , alpha < 1):
12 % B influences the rate of the synthesis of A
13 % A influences the rate of the synthesis of B
14 % S inhibits the inhibition of B by A ( assume complete repression )
15 % Assume S does not change .
16 % Considering individual agents .
17 %% Declare variables and functions
18
19 clear ; tic; clc;
20 rng (0);
21 pb = waitbar (0,'0');
22
23 reps = 100;
24
25 maxTime = 5000; % Maximum Simulation time (sec)
26 dt = 1/50; % Constant ( fixed ) time step increment (sec)
27 t_steps = maxTime / dt;
28
29 k_a = 1; % MICROSCOPIC basal rate of A synthesis (0 th order )
30 k_b = 1; % MICROSCOPIC basal rate of B synthesis (0 th order )
31 k_da = 0.01; % degradation rate constant (1 st order ) for A
32 k_db = 0.01; % degradation rate constant (1 st order ) for B
33 % Populations producing half - maximal regulatory effect .
34 K_b = 50; K_a = 50; K_s = 50;
35
36 S_array = 0:20; % Number of S molecules to do simulation for
37
38 % *** Feedback parameters ***
39 % Degree of activation : >1 activator , <1 repressor , =1 no regulation
40 alpha_a = 0; % Effect of A on synthesis of B; = 0 means Complete Repression
41 alpha_b = 0; % Effect of B on synthesis of A; = 0 means Complete Repression
42 % Hill Coefficients
43 n_b = 3; n_a = 3; n_s = 1;
44
45 % Specify initial population sizes here.
46 Ao = 10; Bo = 10;
47
48 % Preallocate memory .
49 ABK_B = zeros (reps ,size(S_array ,2));
50
51 %% Run ABK simulation 'reps ' number of times
52 for a=1: reps
53
54 progress = a / reps;
55 waitbar (progress ,pb , sprintf ('%.0f%% %',progress *100) );
56 fprintf (1,'\n');
57
58 for s=1: size(S_array ,2)
59
60 fprintf (1,'.');
61
62 S = S_array (s);
63
64 % Initialize - Preallocate memory for variables ; ** Initial conditions **
65 t = 1; % Time counter variable
66 P_sa = zeros (1, t_steps ); % For storing probability of A synthesis at each time step
67 P_sb = zeros (1, t_steps ); % For storing probability of B synthesis at each time step
68
69 Ta = zeros (1, t_steps ); % Sum of A agents in each time step
70 Tb = zeros (1, t_steps ); % Sum of B agents in each time step
71
72 % ******** Initial conditions - Number of A, B Agents ********
73 agents = 200; % disp ([' Agents = ' num2str ( agents )]);
74 Ta (1) = Ao; Tb (1) = Bo;
75 % ************************************************************
76
77 tempA = zeros (1, agents ); tempB = zeros (1, agents );
78 % Put 1 where agenst are alive, then randomize the array
79 for c=1: Ta (1) , tempA (c)=1; end
80 for d=1: Tb (1) , tempB (d)=1; end
81 tempA = RandArray ( tempA ); % Randomize A array
82 tempB = RandArray ( tempB ); % Randomize B array
83 Av = [ tempA ; tempA ]; % Initialize vector storing state of A agents
84 Bv = [ tempB ; tempB ]; % Initialize vector storing state of B agents
85 % Notes on Av , Bv:
86 % - Markov process , so only previous and current time steps needed --> 2 rows:
87 clear c d tempA tempB ;
88
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89 % ABK Simulation
90 P_da = 1 - exp(-k_da * dt); % P_ber of degradation of A, 1st order wrt A
91 P_db = 1 - exp(-k_db * dt); % P_ber of degradation of B, 1st order wrt B
92
93 while t <= t_steps % && Ta(t) > agents /100
94 % fprintf (1,'.');
95
96 k_sa = k_a * (K_b^n_b + alpha_a * Tb(t)^n_b) / (K_b^n_b + Tb(t)^n_b);
97 k_sb = k_b * (K_a^n_a + alpha_b * (Ta(t) * 1/(1+( S/K_s)^n_s))^n_a) / ...
98 (K_a^n_a + (Ta(t) * 1/(1+( S/K_s)^n_s))^n_a);
99

100 P_sa(t) = k_sa * dt; % 0th order synthesis of A ( regulated by B)
101 P_sb(t) = k_sb * dt; % 0th order synthesis of B ( regulated by A)
102
103 % Take care of 0th order processes first
104 if rand < P_sa(t)
105 tempA = find(Av (1 ,:) ==0); % Randomly choose A agent synthesis
106 Av(2, tempA (ceil(rand * size(tempA ,2)))) = 1;
107 end
108
109 if rand < P_sb(t)
110 tempB = find(Bv (1 ,:) ==0); % Randomly choose B agent synthesis
111 Bv(2, tempB (ceil(rand * size(tempB ,2)))) = 1;
112 end
113 % end of 0th order processes
114
115 tempA = find(Av (1 ,:) ==1);
116 for i = 1: size(tempA ,2)
117 if rand < P_da % Degradation of A, 1st order rx
118 Av(2, tempA (i)) = 0; % A agent is degraded
119 end
120 end
121
122 tempB = find(Bv (1 ,:) ==1);
123 for j = 1: size(tempB ,2)
124 if rand < P_db % Degradation of B, 1st order rx
125 Bv(2, tempB (j)) = 0; % A agent is degraded
126 end
127 end
128
129 Ta(t+1) = sum(Av (2 ,:)); Tb(t+1) = sum(Bv (2 ,:));
130 Av (1 ,:) = Av (2 ,:); Bv (1 ,:) = Bv (2 ,:);
131 t = t + 1;
132 end
133
134 % Remove unnecessary terminal 0's from arrays
135 % if t < t_steps
136 % Ta = Ta (1:t); Tb = Tb (1:t);
137 % P_sa = P_sa (1:t); P_sb = P_sb (1:t);
138 % P_da = P_da (1:t); P_db = P_db (1:t);
139 % end
140 % finaltime = (t -1) * dt;
141
142 % Average B population over the last 1000 sec of the simulation
143 % Steady - state has been reached for this time period .
144 ABK_B (a,s) = mean(Tb(end -1000/ dt:end));
145
146 end % end 'for s = 1: size(S_array ,2) ' loop
147 end % end 'for a=1: reps ' loop
148
149 avg_Bss = mean( ABK_B ); sdev_Bss = std( ABK_B );
150
151 %% Plot signal - response (SR) curve
152 fig1 = figure ('Name ','ABK SR Curve ','NumberTitle ','off ');
153 set(fig1 ,'Position ' ,[1 1 500 406]) ; hold on;
154
155 % Plot Theoretical SR curve . Load data obtained from the next code listing .
156 SR = load('. SR_curve .mat ','S_array ','B_ss ');
157 for h=1: size(SR.B_ss ,2)
158 if mod(h ,2) == 0
159 p(h) = plot(SR.S_array ,SR.B_ss (:,h),'--',...
160 'LineWidth ' ,2,'Color ' ,[1 0.69 0.39] , 'DisplayName ','Unstable ');
161 else
162 p(h) = plot(SR.S_array ,SR.B_ss (:,h),'-b','LineWidth ' ,2,'DisplayName ','Stable ');
163 end
164 end
165
166 % Plot ABK SR curve
167 p_ABK = errorbar (S_array ,avg_Bss ,sdev_Bss ,'or ','DisplayName ','ABK <N_R ^*>');
168
169 xlabel ('N_S ');
170 ylabel ('N_R ^* '); % Recall : B |-> R
171
172 axis ([ S_array (1) S_array (end) 0 120]) ;
173 set(gca ,'XMinorTick ','on ','YMinorTick ','on ','Box ','off '); hold off;
174
175 % leg1 = legend ([ p_ABK ],'Location ',' SouthEast ');
176 % set(leg1 ,'FontName ',' Times New Roman ','FontSize ',9,' EdgeColor ' ,[0.95 0.95 0.95]) ;
177
178 %% Plot the percentage of simulations where the switch is in the ON state
179 for x=1: size(ABK_B ,2)
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180 ON(x) = size(find( ABK_B (:,x) >50) ,1) / reps * 100;
181 end
182
183 fig2 = figure ('Name ','% ON ','NumberTitle ','off ');
184 set(fig2 ,'Position ' ,[501 1 500 406]) ; hold on;
185 plot (12* ones (1 ,100) ,1:100 , '--','Color ' ,[1 0.69 0.39]) ;
186 plot(S_array ,ON ,'ob ');
187 xlabel ('N_S '); ylabel ('% ON ');
188 axis ([ S_array (1) S_array (end) 0 100]) ; hold off;
189 set(gca ,'XMinorTick ','on ','YMinorTick ','on ','Box ','off ');
190
191 %% Finish
192 close (pb); toc

1 % This script calculates the deterministic SR curve for the mutual inhibition switch motif .
2 % All parameters are specified in preceding script .
3
4 agents = 110;
5
6 S_array = 0:0.5:20; % S values to do calculations for.
7
8 % Preallocate memory
9 A_ss = zeros (size(S_array ,2) ,3); % Steady state (ss) values for A

10 B_ss = zeros (size(S_array ,2) ,3); % Steady state (ss) values for B ( |-> R )
11
12 for n=1: size(S_array ,2)
13
14 S = S_array (n);
15 fprintf (1 ,[ ' -----------------------------------------\nS = ' num2str (S) ':\n']);
16
17 % *** Set up differential equations of system using symbolic variables ***
18 syms A B k_sa_sym k_sb_sym positive ;
19
20 k_sa_sym = k_a * (K_b^n_b + alpha_b * B^n_b) / (K_b^n_b + B^n_b);
21 k_sb_sym = k_b * (K_a^n_a + alpha_a * (A * 1/(1+( S/K_s)^n_s))^n_a) / ...
22 (K_a^n_a + (A * 1/(1+( S/K_s)^n_s))^n_a);
23
24 dA_sym = + k_sa_sym - k_da * A;
25 dB_sym = + k_sb_sym - k_db * B;
26
27 % Nullclines
28 A_nc_sym = solve ( dA_sym == 0,A,'MaxDegree ' ,4,'Real ',true);
29 B_nc_sym = solve ( dB_sym == 0,B,'MaxDegree ' ,4,'Real ',true);
30
31 % Calculate nullclines
32 A_nc = double (subs(A_nc_sym ,B ,0: agents ));
33 B_nc = double (subs(B_nc_sym ,A ,0: agents ));
34
35 % Nullcline values must be positive !
36 if size(B_nc ,1) > 1
37 for j=size(B_nc ,1) : -1:1
38 if isempty (find(sign(B_nc(j ,:)) == -1, 1,'first ')) == false
39 B_nc(j ,:) = [];
40 end
41 end
42 end
43
44 % Nullcline intersections provide graphically - determined fixed points .
45 [A_ss_int , B_ss_int ] = intersections (A_nc ,0: agents ,0: agents ,B_nc);
46
47 % Clean up duplicate ss data
48 for z=size(B_ss_int ,1) : -1:2
49 temp = B_ss_int (z) - B_ss_int (z -1);
50 if abs(temp) < 0.0001
51 B_ss_int (z) = [];
52 A_ss_int (z) = [];
53 end
54 end
55
56 % * Calculate Jacobian matrix *
57 Jac = jacobian ([ dA_sym , dB_sym ],[A,B]);
58
59 fprintf (1,'Fixed Points :\t\ tEigenvalues \n');
60
61 for w=1: size(A_ss_int ,1)
62 J = double (subs(Jac ,[A,B],[ A_ss_int (w),B_ss_int (w)]));
63 TrJ = J(1 ,1) + J(2 ,2);
64 DetJ = det(J);
65 DiscrJ = TrJ ^2 - 4* DetJ;
66 lambda_plus (w) = (TrJ + sqrt( DiscrJ )) / 2;
67 lambda_minus (w) = (TrJ - sqrt( DiscrJ )) / 2;
68 fprintf (1 ,[ 'A= %4.2f , B= %4.2f :\t %+6.4 f , %+6.4 f \n'],...
69 A_ss_int (w),B_ss_int (w),lambda_plus (w),lambda_minus (w));
70 end
71
72 if isempty ( A_ss_int ) == 0
73 A_ss(n ,:) = A_ss_int (:); B_ss(n ,:) = B_ss_int (:);
74 else
75 A_ss(n ,:) = NaN; B_ss(n ,:) = NaN;
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76 end
77
78 end
79
80 % Remove duplicate fixed points from monostable systems
81 for i=1: size(A_ss ,1)
82 if A_ss(i ,1) == A_ss(i ,2)
83 A_ss(i ,2:3) = NaN; B_ss(i ,2:3) = NaN;
84 end
85 end
86
87 % Plot deterministic SR curve
88 fig1 = figure ('Name ','SR curve ','NumberTitle ','off ');
89 set(fig1 ,'Position ' ,[501 1 500 406]) ; hold on;
90
91 for h=1: size(B_ss ,2)
92 if mod(h ,2) == 0
93 p(h) = plot(S_array ,B_ss (:,h),'--r','LineWidth ' ,2,'DisplayName ','Unstable ');
94 else
95 p(h) = plot(S_array ,B_ss (:,h),'-b','LineWidth ' ,2,'DisplayName ','Stable ');
96 end
97 end
98
99 axis ([ S_array (1) S_array (end) 0 max(max(B_ss)) +10]) ; hold off;

100 set(gca ,'XMinorTick ','on ','YMinorTick ','on ','Box ','off ');
101 xlabel ('N_S '); ylabel ('N_R ^* ');
102
103 leg1 = legend ([p(1) p(2) ]);
104 set(leg1 ,'Location ','SouthEast ');
105 set(leg1 ,'FontName ','Times New Roman ','FontSize ' ,9,...
106 'EdgeColor ' ,[0.95 0.95 0.95]) ;
107
108 % Save results
109 save('SR_curve .mat ');
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Listing D.5 – 1st order process for a heterogeneous population.
1 % A --> B ; Simulating 1st order kinetics .
2 % *** Heterogeneous population ***
3
4 clear ; clc;
5 rng (0);
6
7 dt = 0.01; % Assume constant time step increment (sec)
8 totalTime = 10; % Total simulation time (sec)
9 t_steps = totalTime / dt;

10
11 reps = 500; % Number of times to repeat simulation
12 % k_calc = zeros (size(dt_array ,2) ,n);
13 S = zeros (reps , t_steps ); % Preallocate memory for population size of A
14
15 agents = 10; % Initial population size
16 % Note: # of agents should be integrally divisible by # of subspecies
17
18 extt = zeros (reps , agents ); % To monitor extinction time of agents
19
20 % ****** Set population 's k values ************
21 % Specify subspecies k values [ should be of size (1, subspecies )]
22 k_sub = [0.3 , 0.7];
23 subspecies = size(k_sub ,2); % number of subspecies
24
25 k = [];
26 for h=1: subspecies
27 k = [k , k_sub (h)*ones (1, agents / subspecies )];
28 end
29 ko = mean(k);
30 % *********************************************
31
32 % Time - independent probability for a given agent ( vectorized )
33 P = 1 - exp(-k .* dt); % P from integrated rate law
34 % P = k .* dt; % P from differential rate law
35
36 for n = 1: reps
37
38 A = ones (2, agents ); % Only 2 rows because of Markov property
39 S(n ,1) = agents ; % Set initial population size
40 time = zeros (1, t_steps );
41
42 for t = 1: t_steps
43
44 tempAa = find(A(1 ,:) ==1); % Find 'alive ' A agents
45
46 for i = 1: size(tempAa ,2)
47 if rand < P( tempAa (i)) % ** check probability condition **
48 A(2, tempAa (i)) = 0; % Agent dies
49 extt(n, tempAa (i)) = time(t)+dt; % Record extinction time
50 end % 'if rand ' statement
51 end % 'for i' loop
52
53 S(n,t+1) = sum(A(2 ,:)); % Sum up 'alive ' aganets
54
55 A(1 ,:) = A(2 ,:);
56 time(t+1) = time(t) + dt;
57 end % 'for t' loop
58 end % 'for n' loop
59
60 avg = mean(S); sdev = std(S);
61
62 %% ** Group extinction times by subspecies **
63 % Remove zeros from extt ( zeros represent agents that didn 't die within totalTime )
64 for z=1: agents
65 extt_zeros = find(extt (:,z)==0);
66 for a = 1: size( extt_zeros ,1)
67 extt( extt_zeros (a),z) = NaN;
68 end
69 end
70
71 extt2 = zeros (reps* agents / subspecies , subspecies );
72 s = 1; w = 1;
73
74 for j=1: agents
75 extt2 ((w -1)*reps +1:w*reps ,s) = extt (:,j);
76
77 if j < agents && k(j) ~= k(j+1)
78 s = s + 1;
79 w = 1;
80 else
81 w = w + 1;
82 end
83 end
84
85 %% Calculate theoretical curves
86 t = 0: dt: totalTime ;
87 y_theory_ko = agents * exp(- ko * t);
88 % y_theory_sub1 = agents /2* exp(- k_sub (1) * t);
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89 % y_theory_sub2 = agents /2* exp(- k_sub (2) * t);
90
91 %% Plot average time trajectory
92 figure ;
93 p1 = plot(time ,avg ,'b','LineWidth ' ,1); hold on;
94 p2 = plot(time ,avg+sdev ,'LineStyle ','--','Color ' ,[0.8 0.8 0.8] , 'LineWidth ' ,2);
95 p3 = plot(time ,avg -sdev ,'LineStyle ','--','Color ' ,[0.8 0.8 0.8] , 'LineWidth ' ,2);
96 p4 = plot(t, y_theory_ko ,'g','LineStyle ',':','LineWidth ' ,2);
97 % p5 = plot(t, y_theory_sub1 ,'-r',' MarkerSize ' ,5);
98 % p6 = plot(t, y_theory_sub2 ,'-k',' MarkerSize ' ,5);
99

100 set(gca ,'XMinorTick ','on ','Box ','off ');
101 title ([ 'N_{A,i} = ' num2str ( agents )],'FontName ','Times New Roman ','FontSize ' ,12);
102 axis ([0 10 0 agents ]);
103 xlabel ('t (sec)'); ylabel ('N_A '); hold off;
104
105 leg0 = legend ([ p1 p4],'ABK <N_A(t)>','N_A(t) = 10 e^{- <k> t}');
106 set(leg0 ,'FontName ','Times New Roman ','FontSize ' ,9,...
107 'EdgeColor ' ,[0.95 0.95 0.95] , 'Location ','NorthEast ');
108
109 % hgsave ([' o1_TCdev_A =' num2str ( agents ) '.fig ']);
110
111 % **** Plot sample time trajectories ****
112 % trial = [1 2];
113 % plot(time ,S( trial (1) ,:) ,'ob ',' MarkerSize ' ,3); hold on;
114 % plot(time ,S( trial (2) ,:) ,'+c',' MarkerSize ' ,3);
115 % xlabel ('t (sec) '); ylabel ('N_A ');
116
117 %% Plot Extinction time distribution
118 bins = 10;
119
120 figure ;
121 % hist(extt (: ,:)); % histogram for all agents
122 % hist( extt2 (: ,:) ,bins); % histogram for subspecies
123
124 exp_PDF1 = k_sub (1) / (bins/ totalTime ) * exp(- k_sub (1) * t);
125 exp_PDF2 = k_sub (2) / (bins/ totalTime ) * exp(- k_sub (2) * t);
126 % Note: PDFs need to be adjusted for the number of bins in the histogram
127 % in order to obtain proper fits. Adjustment : divide by (bins/ totalTime )
128
129 [num1 , c1] = hist( extt2 (: ,1) ,bins); % histogram data for subspecies 1
130 [num2 , c2] = hist( extt2 (: ,2) ,bins); % histogram data for subspecies 2
131 Num1 = num1 / (reps* agents / subspecies ); % Normalize
132 Num2 = num2 / (reps* agents / subspecies ); % Normalize
133
134 % b = bar ([c1 ' c2 '] ,[ Num1 ' Num2 ']); % Works in Matlab 2013a (but not in 2017a)
135 b = bar( totalTime /bins /2: totalTime /bins:totalTime ,[ Num1 ' Num2 ']);
136 hold on;
137 set(b(1) ,'FaceColor ','flat ','EdgeColor ' ,[0.70 0.78 1]); % For subspecies 1
138 set(b(2) ,'FaceColor ' ,[1 0.1 0.1] , 'EdgeColor ' ,[1 0.6 0.6]) ; % For subspecies 2
139 plot(t,exp_PDF1 ,'-','Color ' ,[0.15 0.15 1],'LineWidth ' ,1);
140 plot(t,exp_PDF2 ,'-','Color ' ,[1 0.15 0.15] , 'LineWidth ' ,1);
141
142 set(gca ,'XTick ' ,[0 1 2 3 4 5 6 7 8 9 10] ,...
143 'XMinorTick ','on ','YMinorTick ','on ','Box ','off ');
144 xlabel ('t (sec) '); ylabel ('Fraction of A\ rightarrowX Transitions ');
145
146 leg1 = legend ([ 'Subspecies A1 , k_{A1} = ' num2str ( k_sub (1)) ' sec ^{ -1} '],...
147 ['Subspecies A2 , k_{A2} = ' num2str ( k_sub (2)) ' sec ^{ -1} ']);
148 set(leg1 ,'FontName ','Times New Roman ','FontSize ' ,9,...
149 'EdgeColor ' ,[0.95 0.95 0.95] , 'Location ','NorthEast ');
150
151 % Coefficient of Determination R^2 for histogram fits to exponential dist PDFs.
152 % Discretize exp PDF for time points c1 , c2
153 exp_PDF1d = k_sub (1) / (bins/ totalTime ) * exp(- k_sub (1) * c1);
154 exp_PDF2d = k_sub (2) / (bins/ totalTime ) * exp(- k_sub (2) * c2);
155
156 disp ([ 'Subspecies A1: R^2 = ' num2str ( CoefDet (Num1 , exp_PDF1d ))]);
157 disp ([ 'Subspecies A2: R^2 = ' num2str ( CoefDet (Num2 , exp_PDF2d ))]);
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Listing D.6 – 2nd order process A+B → X for a heterogeneous population.
1 % A + B --> C
2 % Simulating 2nd order kinetics using ABK.
3
4 % Heterogeneous Population ! Assuming 2 subinteractions .
5 % Here , I evaluate each possible interaction with respect to B.
6 % (ie , I draw a random number for each possible B-A pair).
7 % Also , I randomize the order of sampled B-A interactions
8 % (see report section 4.1.4 for details ).
9

10 clear ; clc;
11 rng (0);
12
13 agents = 10;
14
15 maxTime = 200;
16 dt = 1/100; % Fixed time step increment
17 t_steps = ceil( maxTime / dt);
18
19 reps = 1000; % Repeat experiment reps times
20
21 % Initial number of reactant molecules ; assume B is limiting .
22 Ao = agents ; Bo = ceil (0.7* agents );
23 Co = 0; Cmax = Bo;
24
25 % **************** 2 Distinct Subinteractions *********************
26 % ********** Set up k- matrix wrt B (size: Bo x Ao) ************
27 k_sub = [0.001 , 0.009]; % units : 1/ sec
28 subints = size(k_sub ,2); % number of subinteractions
29 k1 = k_sub (1)*ones(Bo ,Ao /2); k2 = k_sub (2)*ones(Bo ,Ao /2);
30 k = [k1 , k2 ];
31 ko = mean(mean(k)); % units : 1/ sec
32 % *****************************************************************
33
34 % ******************** # Subints = Bo*Ao **************************
35 % **************** Normally - Distributed k *************************
36 % ********* Set up k- matrix wrt B (size: Bo x Ao) *****************
37 % ko = 0.001; % Mean k value
38 % sigma = 0.0001; % standard deviation of k
39 %
40 % repeat = 1;
41 % while repeat == 1
42 % k = ko + sigma * randn (Bo ,Ao); % Normally distributed with mean=ko and std= sigma
43 % repeat = 0;
44 % negk = find(k <=0);
45 % if isempty (negk)==0 % Ensure there are no negative k values
46 % repeat = 1;
47 % end
48 % end
49 % *****************************************************************
50
51 extt1 = zeros (reps , Bo); % To monitor extinction time of 1st subinteraction
52 extt2 = zeros (reps , Bo); % To monitor extinction time of 2nd subinteraction
53
54 %% Preallocate memory ; Initialize time - dependent sum of molecule numbers
55 At = zeros (reps , t_steps +1); Bt = zeros (reps , t_steps +1); Ct = zeros (reps , t_steps +1);
56
57 for n=1: reps
58
59 fprintf (1,'.');
60
61 % Arrays for tracking reactant and product agent status
62 A = ones (1,Ao); B = ones (1,Bo); C = zeros (1, Cmax);
63 At(n ,1) = sum(A); Bt(n ,1) = sum(B); Ct(n ,1) = sum(C);
64 time = zeros (1, t_steps );
65
66 for t=1: t_steps
67
68 tempA = find(A==1); % Find 'alive ' agents A
69 tempB = find(B==1); % Find 'alive ' agents B
70
71 tempA = RandArray ( tempA ); % Randomize order of alive A agents
72
73 for i = 1: size(tempB ,2)
74 for j = 1: size(tempA ,2) % Then see if it reacts with an A agent
75
76 P = 1 - exp(- k( tempB (i),tempA (j)) * dt); % P_int
77 % P = k( tempB (i),tempA (j)) * dt; % P_dif
78
79 if rand < P
80
81 B( tempB (i)) = 0;
82 A( tempA (j)) = 0;
83 C( tempB (i)) = 1;
84
85 % Assume two subinteractions :
86 if tempA (j) <= Ao /2 % Extinction time for
87 extt1 (n, tempB (i)) = time(t)+dt; % 1st subinteraction
88 else % Extinction time for
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89 extt2 (n, tempB (i)) = time(t)+dt; % 2nd subinteraction
90 end
91
92 break ; % B( tempB (i)) agent has reacted in this time step.
93
94 end
95 end
96 end
97
98
99 At(n,t+1) = sum(A); Bt(n,t+1) = sum(B); Ct(n,t+1) = sum(C);

100 time(t+1) = time(t) + dt;
101
102 end
103
104 end % end 'for reps ' loop
105
106 % Population statistics of time trajectories
107 avgA = mean(At); avgB = mean(Bt); avgC = mean(Ct);
108 sdevA = std(At); sdevB = std(Bt); sdevC = std(Ct);
109
110 % Solve ODE for 2nd order kinetics
111 [t_sol , y_sol ] = ode45 (@(t,y) o2_dif (t,y,ko) ,0: maxTime /100: maxTime ,[ Ao ; Bo ; Co ]);
112
113 %% ** Group extinction times by subspecies ** - Works for subspecies = 2 simulation
114 % Remove zeros from extt ( zeros represent agents that didn 't die within totalTime )
115 f = size(extt1 ,2);
116 for z=1:f
117 extt1_zeros = find( extt1 (:,z)==0);
118 for a = 1: size( extt1_zeros ,1)
119 extt1 ( extt1_zeros (a),z) = NaN;
120 end
121 end
122
123 g = size(extt2 ,2);
124 for q=1:g
125 extt2_zeros = find( extt2 (:,q)==0);
126 for b = 1: size( extt2_zeros ,1)
127 extt2 ( extt2_zeros (b),q) = NaN;
128 end
129 end
130
131 extt1 = reshape (extt1 ,[] ,1); % Reshape to column vector
132 extt2 = reshape (extt2 ,[] ,1); % Reshape to column vector
133 %% Plot time trajectories
134 fig0 = figure ('Name ','2nd Order Rx Time course ','NumberTitle ','off ');
135 fig0. PaperUnits = 'inches ';
136 fig0. PaperPosition = [0 0 6 5]; % Control the size of printed (eps) fig.
137
138 plot(time ,avgA ,time ,avgB); hold on;
139 % plot(time ,avgC);
140
141 % Plot DE Time Courses
142 plot(t_sol , y_sol (: ,1) ,':c','LineWidth ' ,2);
143 plot(t_sol , y_sol (: ,2) ,':m','LineWidth ' ,2);
144 % plot(t_sol , y_sol (: ,3) ,':k',' LineWidth ' ,2);
145
146 p1_devA1 = plot(time ,avgA+sdevA ,'LineStyle ','--','Color ' ,[0.8 0.8 0.8] , 'LineWidth ' ,2);
147 p1_devA0 = plot(time ,avgA -sdevA ,'LineStyle ','--','Color ' ,[0.8 0.8 0.8] , 'LineWidth ' ,2);
148 p1_devB1 = plot(time ,avgB+sdevB ,'LineStyle ','--','Color ' ,[0.8 0.8 0.8] , 'LineWidth ' ,2);
149 p1_devB0 = plot(time ,avgB -sdevB ,'LineStyle ','--','Color ' ,[0.8 0.8 0.8] , 'LineWidth ' ,2);
150 % p1_devC1 = plot(time ,avgC+sdevC ,' LineStyle ','--','Color ' ,[0.8 0.8 0.8] , ' LineWidth ' ,2);
151 % p1_devC0 = plot(time ,avgC -sdevC ,' LineStyle ','--','Color ' ,[0.8 0.8 0.8] , ' LineWidth ' ,2);
152
153 title ([ 'k_{BA -1} = ' num2str ( k_sub (1)) ' sec ^{ -1} , k_{BA -2} = ' num2str ( k_sub (2)) ' sec ^{ -1} '],...
154 'FontName ','Times New Roman ','FontSize ' ,12,'FontWeight ','Normal ');
155
156 xlabel ('t (sec)'); ylabel ('N(t)'); hold off;
157 axis ([0 maxTime 0 agents ]);
158 set(gca ,'XMinorTick ','on ','Box ','off ');
159
160 leg0 = legend ('ABK <N_A(t)>','ABK <N_B(t)>','DE N_A(t)','DE N_B(t)');
161 set(leg0 ,'FontName ','Times New Roman ','FontSize ' ,9,...
162 'EdgeColor ' ,[0.95 0.95 0.95] , 'Location ','NorthEast ');
163
164 %% Plot Extinction time distribution
165 bins = 20;
166 fig1 = figure ;
167 fig1. PaperUnits = 'inches ';
168 fig1. PaperPosition = [0 0 6 5]; % Control the size of printed (eps) fig.
169
170 [num1 , c1] = hist(extt1 ,bins); % histogram data for subinteraction 1
171 [num2 , c2] = hist(extt2 ,bins); % histogram data for subinteraction 2
172 Num1 = num1 / (reps*Bo); % Normalize
173 Num2 = num2 / (reps*Bo); % Normalize
174
175 % Generate values for PDF based on ODE solution .
176 timeD = 0: maxTime /bins: maxTime ;
177 [t_sol1 , y_sol1 ] = ode45 (@(t,y) o2_dif (t,y, k_sub (1)),timeD ,[ Ao ; Bo ; Co ]);
178 [t_sol2 , y_sol2 ] = ode45 (@(t,y) o2_dif (t,y, k_sub (2)),timeD ,[ Ao ; Bo ; Co ]);
179 % dA = abs(diff( y_sol2 (: ,1))) / Ao;
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180 dB1 = abs(diff( y_sol1 (: ,2))) / Bo / 2;
181 dB2 = abs(diff( y_sol2 (: ,2))) / Bo / 2;
182
183 timeDm = maxTime /bins /2: maxTime /bins: maxTime ;
184
185 b = bar(timeDm ,[ Num1 ' Num2 ']); hold on;
186 set(b(1) ,'FaceColor ','flat ','EdgeColor ' ,[0.70 0.78 1]); % For subinteraction 1
187 set(b(2) ,'FaceColor ' ,[1 0.1 0.1] , 'EdgeColor ' ,[1 0.6 0.6]) ; % For subinteraction 2
188
189 plot(timeDm ,dB1 ,'xb ');
190 plot(timeDm ,dB2 ,'or '); hold off;
191
192 axis ([0 maxTime 0 0.3]) ;
193 set(gca ,'Ytick ' ,0:0.05:0.3 ,...
194 'YtickLabel ' ,{'0' '0.05 ' '0.10 ' '0.15 ' '0.20 ' '0.25 ' '0.30 '});
195 set(gca ,'XMinorTick ','on ','YMinorTick ','on ','Box ','off ');
196 xlabel ('t (sec) '); ylabel ('Fraction of A+B\ rightarrowX Transitions ');
197
198 leg1 = legend ([ 'Subinteraction BA -1, k_{BA -1} = ' num2str ( k_sub (1)) ' sec ^{ -1} '],...
199 ['Subinteraction BA -2, k_{BA -2} = ' num2str ( k_sub (2)) ' sec ^{ -1} ']);
200 set(leg1 ,'FontName ','Times New Roman ','FontSize ' ,9,...
201 'EdgeColor ' ,[0.95 0.95 0.95] , 'Location ','NorthEast ');
202
203 % Coefficient of Determination R^2 for histogram fit to distribution PDF.
204 disp ([ 'Subint -1: R^2 = ' num2str ( CoefDet (Num1 ,dB1 '))]);
205 disp ([ 'Subint -2: R^2 = ' num2str ( CoefDet (Num2 ,dB2 '))]);
206
207 err = [Num1 ' - dB1 , Num2 ' - dB2 ]; % calculate Deviation
208
209 ax2 = axes('Parent ',fig1 ,'Position ' ,[0.62 0.45 0.25 0.25] , 'FontSize ' ,8);
210 p_res = plot(timeDm ,err ,'.','Parent ',ax2); hold on;
211 set( p_res (2) ,'Color ','r');
212 plot(timeDm , zeros (1, size(timeDm ,2)),'--','Color ' ,[0.5 0.5 0.5] , 'Parent ',ax2);
213
214 axis ([0 maxTime -0.04 0.04]) ;
215 set(gca ,'XMinorTick ','on ','YMinorTick ','on ','Box ','on ');
216 xlabel ('t (sec) '); ylabel ('Deviation ');
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Listing D.7 – Function for fitting a curve to the Hill equation.
1 function [estimates , Rj] = FitCurve_Hill (xdata , ydata )
2 % This function fits the data to the Hill equation and the results
3 % are printed on standard output (A graph is NOT produced ). .
4 % Parameters n (the Hill coefficient , nH) and K are reported .
5 % ** Input arguments xdata , ydata , must be row vectors . **
6
7 % Call fminsearch with a random starting point .
8 start_point = rand (2);
9 model = @ fitfun ;

10 estimates = fminsearch (model , start_point );
11
12 % fitfun accepts curve parameters as inputs , and outputs sse ,
13 % the sum of squares error for [ xdata ^n / ( xdata ^n + K)] - ydata ,
14 % and the FittedCurve . FMINSEARCH only needs sse.
15
16 function [sse , FittedCurve ] = fitfun ( params )
17 n = params (1);
18 K = params (2);
19 FittedCurve = xdata .^n ./ ( xdata .^n + K);
20 ErrorVector = FittedCurve - ydata ;
21 sse = sum( ErrorVector .^2);
22 end
23
24 % Calculate Correlation Coefficient
25 Fit = xdata .^ estimates (1) ./ ( xdata .^ estimates (1) + estimates (2));
26 Compare = [( ydata )' (Fit) '];
27 [r p] = corrcoef ( Compare );
28 R = r(1 ,2); p_value = p(1 ,2);
29
30 % Calculate sensitivity coefficient (Rj): Ratio of concentration
31 % of effector needed to produce a 90% response to that producing
32 % a 10% response .
33 x90 = (9 * estimates (2))^(1/ estimates (1));
34 x10 = (1/9 * estimates (2))^(1/ estimates (1));
35 Rj = x90 / x10;
36
37 % Print results to std output
38 disp ([ 'nH=' num2str ( estimates (1)) ', K=' num2str ( estimates (2)) ...
39 ', R_j=' num2str (Rj)]);
40 disp ([ 'R=' num2str (R) ', p=' num2str ( p_value )]);
41
42 end
43
44 % This function can serve as a template for fitting data to a
45 % user - specified equation .
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Nomenclature

ABK Agent-Based Kinetics

ABM Agent-Based Modeling

CDF Cumulative Distribution Function

CME Chemical Master Equation

CRN Common Random Numbers procedure

DDE Delay Differential Equation

iFFL Incoherent Feedforward Loop

KCF Kinetic Complementarity Factor (symbol: Ω)

ODE Ordinary Differential Equation

PDF Probability Density Function

PHAF Persistent High-Amplitude Fluctuations

PHM Population Heterogeneity Matrix

RSF Regulation Scaling Function (symbol: F )

SR Signal-Response

SSA Stochastic Simulation Algorithm (Gillespie’s algorithm)

SSR Sum of Squared Residuals
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